上海2023年高考真题和模拟题物理分项汇编11.电磁感应
展开1. (2023海南卷)汽车测速利用了电磁感应现象,汽车可简化为一个矩形线圈abcd,埋在地下的线圈分别为1、2,通上顺时针(俯视)方向电流,当汽车经过线圈时
A. 线圈1、2产生的磁场方向竖直向上
B. 汽车进入线圈1过程产生感应电流方向为abcd
C. 汽车离开线圈1过程产生感应电流方向为abcd
D. 汽车进入线圈2过程受到的安培力方向与速度方向相同
【答案】C
【解析】由题知,埋在地下的线圈1、2通顺时针(俯视)方向的电流,则根据右手定则,可知线圈1、2产生的磁场方向竖直向下,A错误;
汽车进入线圈1过程中,磁通量增大,根据楞次定律可知产生感应电流方向为adcb(逆时针),B错误;
汽车离开线圈1过程中,磁通量减小,根据楞次定律可知产生感应电流方向为abcd(顺时针),C正确;
汽车进入线圈2过程中,磁通量增大,根据楞次定律可知产生感应电流方向为adcb(逆时针),再根据左手定则,可知汽车受到的安培力方向与速度方向相反,D错误。
2. (2023江苏卷)如图所示,圆形区域内有垂直纸面向里的匀强磁场,OC导体棒的O端位于圆心,棒的中点A位于磁场区域的边缘。现使导体棒绕O点在纸面内逆时针转动。O、A、C点电势分别为φ0、φA、φC,则( )
A. φO>φCB. φC>φAC. φO = φAD. φO-φA = φA-φC
【答案】A
【解析】ABC.由题图可看出OA导体棒转动切割磁感线,则根据右手定则可知
φO>φA
其中导体棒AC段不在磁场中,不切割磁感线,电流0,则φC = φA,A正确、BC错误;
D.根据以上分析可知φO-φA> 0,φA-φC = 0
则φO-φA> φA-φCD错误。故选A。
3. (2023湖北卷)近场通信(NFC)器件应用电磁感应原理进行通讯,其天线类似一个压平的线圈,线圈尺寸从内到外逐渐变大。如图所示,一正方形NFC线圈共3匝,其边长分别为、和,图中线圈外线接入内部芯片时与内部线圈绝缘。若匀强磁场垂直通过此线圈,磁感应强度变化率为,则线圈产生的感应电动势最接近( )
A. B. C. D.
【答案】B
【解析】根据法拉第电磁感应定律可知
故选B。
4. (2023全国甲卷)一有机玻璃管竖直放在水平地面上,管上有漆包线绕成的线圈,线圈的两端与电流传感器相连,线圈在玻璃管上部的5匝均匀分布,下部的3匝也均匀分布,下部相邻两匝间的距离大于上部相邻两匝间的距离。如图(a)所示。现让一个很小的强磁体在玻璃管内沿轴线从上端口由静止下落,电流传感器测得线圈中电流I随时间t的变化如图(b)所示。则( )
A. 小磁体在玻璃管内下降速度越来越快
B. 下落过程中,小磁体的N极、S极上下顺倒了8次
C. 下落过程中,小磁体受到的电磁阻力始终保持不变
D. 与上部相比,小磁体通过线圈下部的过程中,磁通量变化率的最大值更大
【答案】AD
【解析】AD.电流的峰值越来越大,即小磁铁在依次穿过每个线圈的过程中磁通量的变化率越来越快,因此小磁体的速度越来越大,AD正确;
B.假设小磁体是N极向下穿过线圈,则在穿入靠近每匝线圈的过程中磁通量向下增加产生逆时针的电流,而在穿出远离每匝线圈的过程中磁通量向下减少产生逆时针的电流,即电流方向相反与题干描述的穿过线圈的过程电流方向变化相符,S极向下同理,B错误;
C.线圈可等效为条形磁铁,线圈的电流越大则磁性越强,因此电流的大小是变化的小磁体受到的电磁阻力是变化的,不是一直不变的,D错误。
故选AD。
5. (2023新课标卷)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N极正对着乙的S极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等。现同时释放甲和乙,在它们相互接近过程中的任一时刻( )
A. 甲的速度大小比乙的大B. 甲的动量大小比乙的小
C. 甲的动量大小与乙的相等D. 甲和乙的动量之和不为零
【答案】BD
【解析】对甲、乙两条形磁铁分别做受力分析,如图所示
A.根据牛顿第二定律有
由于
m甲>m乙
所以
a甲由于两物体运动时间相同,且同时由静止释放,可得
v甲
BCD.对于整个系统而言,由于μm甲g>μm乙g,合力方向向左,合冲量方向向左,所以合动量方向向左,显然甲的动量大小比乙的小,BD正确、C错误。
故选BD。
6.(2023浙江1月卷)如图甲所示,一导体杆用两条等长细导线悬挂于水平轴,接入电阻R构成回路.导体杆处于竖直向上的匀强磁场中,将导体杆从竖直位置拉开小角度θ静止释放,导体杆开始下摆.当时,导体杆振动图像如图乙所示.若横纵坐标皆采用图乙标度,则当时,导体杆振动图像是( )
A. B. C. D.
【答案】B
【解析】导体杆切割磁感线时,回路中产生感应电流,由楞次定律可得,导体杆受到的安培力总是阻碍导体棒的运动。当从变为时,回路中的电阻增大为原来的2倍,则电流减小,导体杆所受安培力减小,即导体杆在摆动时所受的阻力减弱,所杆从开始摆动到停止,运动的路程和经历的时间变长,所以导体杆振动图像是图B。
7. (2023浙江6月卷)如图所示,质量为M、电阻为R、长为L的导体棒,通过两根长均为l、质量不计的导电细杆连在等高的两固定点上,固定点间距也为L。细杆通过开关S可与直流电源或理想二极管串接。在导体棒所在空间存在磁感应强度方向竖直向上、大小为B的匀强磁场,不计空气阻力和其它电阻。开关S接1,当导体棒静止时,细杆与竖直方向的夹角固定点;然后开关S接2,棒从右侧开始运动完成一次振动的过程中( )
A. 电源电动势B. 棒消耗的焦耳热
C. 从左向右运动时,最大摆角小于D. 棒两次过最低点时感应电动势大小相等
【答案】C
【解析】A.当开关接1时,对导体棒受力分析如图所示
根据几何关系可得
解得
根据欧姆定律
解得
故A错误;
根据右手定则可知导体棒从右向左运动时,产生的感应电动势与二极管正方向相同,部分机械能转化为焦耳热;导体棒从左向右运动时,产生的感应电动势与二极管相反,没有机械能损失
B.当导体棒运动到最低点速度为零时,导体棒损失的机械能转化为焦耳热为
根据楞次定律可知导体棒完成一次振动速度为零时,导体棒高度高于最低点,所以棒消耗的焦耳热
故B错误;
C.根据B选项分析可知,导体棒运动过程中,机械能转化为焦耳热,所以从左向右运动时,最大摆角小于,故C正确;
D.根据B选项分析,导体棒第二次经过最低点时的速度小于第一次经过最低点时的速度,根据
可知棒两次过最低点时感应电动势大小不相等,故D错误。
故选C。
8. (2023辽宁卷)如图,两根光滑平行金属导轨固定在绝缘水平面上,左、右两侧导轨间距分别为d和2d,处于竖直向上的磁场中,磁感应强度大小分别为2B和B。已知导体棒MN的电阻为R、长度为d,导体棒PQ的电阻为2R、长度为2d,PQ的质量是MN的2倍。初始时刻两棒静止,两棒中点之间连接一压缩量为L的轻质绝缘弹簧。释放弹簧,两棒在各自磁场中运动直至停止,弹簧始终在弹性限度内。整个过程中两棒保持与导轨垂直并接触良好,导轨足够长且电阻不计。下列说法正确的足( )
A. 弹簧伸展过程中、回路中产生顺时针方向的电流
B. PQ速率为v时,MN所受安培力大小为
C. 整个运动过程中,MN与PQ的路程之比为2:1
D. 整个运动过程中,通过MN的电荷量为
【答案】AC
【解析】A.弹簧伸展过程中,根据右手定则可知,回路中产生顺时针方向电流,选项A正确;
B.任意时刻,设电流为I,则PQ受安培力
方向向左;MN受安培力
方向向右,可知两棒系统受合外力为零,动量守恒,设PQ质量为2m,则MN质量为m, PQ速率为v时,则
解得
回路的感应电流
MN所受安培力大小为
选项B错误;
C.两棒最终停止时弹簧处于原长状态,由动量守恒可得
可得则最终MN位置向左移动
PQ位置向右移动
因任意时刻两棒受安培力和弹簧弹力大小都相同,设整个过程两棒受的弹力的平均值为F弹,安培力平均值F安,则整个过程根据动能定理
可得
选项C正确;
D.两棒最后停止时,弹簧处于原长位置,此时两棒间距增加了L,由上述分析可知,MN向左位置移动,PQ位置向右移动,则
选项D错误。
故选AC。
9. (2023全国乙卷)一学生小组在探究电磁感应现象时,进行了如下比较实验。用图(a)所示的缠绕方式,将漆包线分别绕在几何尺寸相同的有机玻璃管和金属铝管上,漆包线的两端与电流传感器接通。两管皆竖直放置,将一很小的强磁体分别从管的上端由静止释放,在管内下落至管的下端。实验中电流传感器测得的两管上流过漆包线的电流I随时间t的变化分别如图(b)和图(c)所示,分析可知( )
A. 图(c)是用玻璃管获得的图像
B. 在铝管中下落,小磁体做匀变速运动
C. 在玻璃管中下落,小磁体受到的电磁阻力始终保持不变
D. 用铝管时测得的电流第一个峰到最后一个峰的时间间隔比用玻璃管时的短
【答案】A
【解析】A.强磁体在铝管中运动,铝管会形成涡流,玻璃是绝缘体故强磁体在玻璃管中运动,玻璃管不会形成涡流。强磁体在铝管中加速后很快达到平衡状态,做匀速直线运动,而玻璃管中的磁体则一直做加速运动,故由图像可知图(c)的脉冲电流峰值不断增大,说明强磁体的速度在增大,与玻璃管中磁体的运动情况相符,A正确;
B.在铝管中下落,脉冲电流的峰值一样,磁通量的变化率相同,故小磁体做匀速运动,B错误;
C.在玻璃管中下落,玻璃管为绝缘体,线圈的脉冲电流峰值增大,电流不断在变化,故小磁体受到的电磁阻力在不断变化,C错误;
D.强磁体分别从管的上端由静止释放,在铝管中,磁体在线圈间做匀速运动,玻璃管中磁体在线圈间做加速运动,故用铝管时测得的电流第一个峰到最后一个峰的时间间隔比用玻璃管时的长,D错误。
故选A。
10. (2023山东卷)足够长U形导轨平置在光滑水平绝缘桌面上,宽为,电阻不计。质量为、长为、电阻为的导体棒MN放置在导轨上,与导轨形成矩形回路并始终接触良好,I和Ⅱ区域内分别存在竖直方向的匀强磁场,磁感应强度分别为和,其中,方向向下。用不可伸长的轻绳跨过固定轻滑轮将导轨CD段中点与质量为的重物相连,绳与CD垂直且平行于桌面。如图所示,某时刻MN、CD同时分别进入磁场区域I和Ⅱ并做匀速直线运动,MN、CD与磁场边界平行。MN的速度,CD的速度为且,MN和导轨间的动摩擦因数为0.2。重力加速度大小取,下列说法正确的是( )
A. 的方向向上B. 的方向向下C. D.
【答案】BD
【解析】AB.导轨的速度,因此对导体棒受力分析可知导体棒受到向右的摩擦力以及向左的安培力,摩擦力大小为
导体棒的安培力大小为
由左手定则可知导体棒的电流方向为,导体框受到向左的摩擦力,向右的拉力和向右的安培力,安培力大小为
由左手定则可知的方向为垂直直面向里,A错误B正确;
CD.对导体棒分析
对导体框分析
电路中的电流为
联立解得
C错误D正确;
故选BD。
11.(2023湖南卷)如图,两根足够长的光滑金属直导轨平行放置,导轨间距为,两导轨及其所构成的平面均与水平面成角,整个装置处于垂直于导轨平面斜向上的匀强磁场中,磁感应强度大小为.现将质量均为的金属棒垂直导轨放置,每根金属棒接入导轨之间的电阻均为.运动过程中金属棒与导轨始终垂直且接触良好,金属棒始终未滑出导轨,导轨电阻忽略不计,重力加速度为.
(1)先保持棒静止,将棒由静止释放,求棒匀速运动时速度大小;
(2)在(1)问中,当棒匀速运动时,再将棒由静止释放,求释放瞬间棒的加速度大小;
(3)在(2)问中,从棒释放瞬间开始计时,经过时间,两棒恰好达到相同的速度,求速度的大小,以及时间内棒相对于棒运动的距离.
【答案】(1);(2);(3)
【解析】(1)a导体棒在运动过程中重力沿斜面的分力和a棒的安培力相等时做匀速运动,由法拉第电磁感应定律可得
有闭合电路欧姆定律及安培力公式可得
,
a棒受力平衡可得
联立记得
(2)由右手定则可知导体棒b中电流向里,b棒 沿斜面向下的安培力,此时电路中电流不变,则b棒牛顿第二定律可得
解得
(3)释放b棒后a棒受到沿斜面向上的安培力,在到达共速时对a棒动量定理
b棒受到向下的安培力,对b棒动量定理
联立解得
此过程流过b棒的电荷量为q,则有
由法拉第电磁感应定律可得
联立b棒动量定理可得
12. (2023全国甲卷)如图,水平桌面上固定一光滑U型金属导轨,其平行部分的间距为,导轨的最右端与桌于右边缘对齐,导轨的电阻忽略不计。导轨所在区域有方向竖直向上的匀强磁场,磁感应强度大小为。一质量为、电阻为、长度也为的金属棒P静止在导轨上。导轨上质量为的绝缘棒Q位于P的左侧,以大小为的速度向P运动并与P发生弹性碰撞,碰撞时间很短。碰撞一次后,P和Q先后从导轨的最右端滑出导轨,并落在地面上同一地点。P在导轨上运动时,两端与导轨接触良好,P与Q始终平行。不计空气阻力。求
(1)金属棒P滑出导轨时速度大小;
(2)金属体P在导轨上运动过程中产生的热量;
(3)与P碰撞后,绝缘棒Q在导轨上运动的时间。
【答案】(1);(2);(3)
【解析】(1)由于绝缘棒Q与金属棒P发生弹性碰撞,根据动量守恒和机械能守恒可得
联立解得
,
由题知,碰撞一次后,P和Q先后从导轨的最右端滑出导轨,并落在地面上同一地点,则金属棒P滑出导轨时的速度大小为
(2)根据能量守恒有
解得
(3)P、Q碰撞后,对金属棒P分析,根据动量定理得
又
,
联立可得
由于Q为绝缘棒,无电流通过,做匀速直线运动,故Q运动的时间为
13. (2023新课标卷)一边长为L、质量为m的正方形金属细框,每边电阻为R0,置于光滑的绝缘水平桌面(纸面)上。宽度为2L的区域内存在方向垂直于纸面的匀强磁场,磁感应强度大小为B,两虚线为磁场边界,如图(a)所示。
(1)使金属框以一定初速度向右运动,进入磁场。运动过程中金属框的左、右边框始终与磁场边界平行,金属框完全穿过磁场区域后,速度大小降为它初速度的一半,求金属框的初速度大小。
(2)在桌面上固定两条光滑长直金属导轨,导轨与磁场边界垂直,左端连接电阻R1= 2R0,导轨电阻可忽略,金属框置于导轨上,如图(b)所示。让金属框以与(1)中相同的初速度向右运动,进入磁场。运动过程中金属框的上、下边框处处与导轨始终接触良好。求在金属框整个运动过程中,电阻R1产生的热量。
【答案】(1);(2)
【解析】(1)金属框进入磁场过程中有
则金属框进入磁场过程中流过回路的电荷量为
则金属框完全穿过磁场区域的过程中流过回路的电荷量为
且有
联立有
(2)设金属框的初速度为v0,则金属框进入磁场时的末速度为v1,向右为正方向。由于导轨电阻可忽略,此时金属框上下部分被短路,故电路中的总电
再根据动量定理有
解得
则在此过程中根据能量守恒有
解得
其中
此后线框完全进入磁场中,则线框左右两边均作为电源,且等效电路图如下
则此时回路的总电阻
设线框刚离开磁场时的速度为v2,再根据动量定理有
解得
v2= 0
则说明线框刚离开磁场时就停止运动了,则再根据能量守恒有
其中
则在金属框整个运动过程中,电阻R1产生的热量
14. (2023浙江6月卷)某兴趣小组设计了一种火箭落停装置,简化原理如图所示,它由两根竖直导轨、承载火箭装置(简化为与火箭绝缘的导电杆MN)和装置A组成,并形成闭合回路。装置A能自动调节其输出电压确保回路电流I恒定,方向如图所示。导轨长度远大于导轨间距,不论导电杆运动到什么位置,电流I在导电杆以上空间产生的磁场近似为零,在导电杆所在处产生的磁场近似为匀强磁场,大小(其中k为常量),方向垂直导轨平面向里;在导电杆以下的两导轨间产生的磁场近似为匀强磁场,大小,方向与B1相同。火箭无动力下降到导轨顶端时与导电杆粘接,以速度v0进入导轨,到达绝缘停靠平台时速度恰好为零,完成火箭落停。已知火箭与导电杆的总质量为M,导轨间距,导电杆电阻为R。导电杆与导轨保持良好接触滑行,不计空气阻力和摩擦力,不计导轨电阻和装置A的内阻。在火箭落停过程中,
(1)求导电杆所受安培力的大小F和运动的距离L;
(2)求回路感应电动势E与运动时间t的关系;
(3)求装置A输出电压U与运动时间t的关系和输出的能量W;
(4)若R的阻值视为0,装置A用于回收能量,给出装置A可回收能量的来源和大小。
【答案】(1)3Mg;;(2);(3);;(4)装置A可回收火箭的动能和重力势能;
【解析】(1)导体杆受安培力
方向向上,则导体杆向下运动的加速度
解得
a=-2g
导体杆运动的距离
(2)回路的电动势
其中
解得
(3)由能量关系
其中
可得
输出能量
(4)装置A可回收火箭的动能和重力势能;从开始火箭从速度v0到平台速度减为零,则
15.(2023浙江1月卷)如图1所示,刚性导体线框由长为L、质量均为.m的两根竖杆,与长为的两轻质横杆组成,且.线框通有恒定电流,可以绕其中心竖直轴转动.以线框中心O为原点、转轴为z轴建立直角坐标系,在y轴上距离O为a处,固定放置二半径远小于a,面积为s、电阻为R的小圆环,其平面垂直于y轴.在外力作用下,通电线框绕转轴以角速度匀速转动,当线框平面与平面重合时为计时零点,圆环处的磁感应强度的y分量与时间的近似关系如图2所示,图中已知.
(1)求0到时间内,流过圆环横截面的电荷量q;
(2)沿y轴正方向看以逆时针为电流正方向,在时间内,求圆环中的电流与时间的关系;
(3)求圆环中电流的有效值;
(4)当撤去外力,线框将缓慢减速,经时间角速度减小量为,设线框与圆环的能量转换效率为k,求的值(当,有).
【答案】(1);(2);
(3);(4)
【解析】
(1)由法拉第电磁感应定律
由闭合电路欧姆定律
由电流定义式
联立可得
(2)在时
在时
(3)从能量角度
解得
(4)由能量传递
化简可得
即
解得
2023年高考模拟题
1. (2023·广东广州天河二模)(多选)图甲为某款“自发电”无线门铃按钮,其“发电”原理如图乙所示,按下门铃按钮过程磁铁靠近螺线管,松开门铃按钮磁铁远离螺线管回归原位置。下列说法正确的是( )
A. 按下按钮过程,螺线管端电势较高
B. 松开按钮过程,螺线管端电势较高
C. 按住按钮不动,螺线管中产生恒定的感应电动势
D. 若按下和松开按钮的时间相同,螺线管产生大小相同的感应电动势
【答案】BD
【解析】A.按下按钮过程,穿过螺线管的磁通量向左增大,根据楞次定律可知螺线管中感应电流为从P端流入从Q端流出,螺线管充当电源,则Q端电势较高,故A错误;
B.松开按钮过程,穿过螺线管的磁通量向左减小,根据楞次定律可知螺线管中感应电流为从Q端流入,从P端流出,螺线管充当电源,则P端电势较高,故B正确;
C.按住按钮不动,穿过螺线管的磁通量不变,螺线管不会产生感应电动势,故C错误;
D.按下和松开按钮过程,若按下和松开按钮的时间相同,螺线管中磁通量的变化率相同,根据法拉第电磁感应定律可知,螺线管产生的感应电动势大小相同,故D正确。
故选BD。
2. (2023·广东茂名一模)(多选)如图为电吉他中电拾音器的基本结构。磁体附近的金属弦被磁化,在弦振动过程中线圈会产生感应电流,经电路放大后传送到音箱发出声音,下列说法正确的是( )
A. 拾音器的工作原理是利用了电流的磁效应现象
B. 取走磁体,电吉他将不能正常工作
C. 减少线圈匝数,可减小线圈中的感应电动势
D. 弦振动过程中,线圈中的电流方向不变
【答案】BC
【解析】A.电吉他的拾音器由磁铁和线圈组成,钢弦被磁化,弹动钢弦,相当于线圈做切割磁感线运动,在线圈中就会产生对应的音频电流,利用了电磁感应的原理,故A错误;
B.取走磁体,就没有磁场,振弦不能切割磁感线产生电流,电吉他将不能正常工作,故B正确;
C.根据法拉第电磁感应定律,减少线圈的匝数可以减小线圈中的感应电动势,故C正确;
D.弦振动过程中,螺线管磁通量有增加过程,有减小过程,所以线圈中电流方向变化,故D错误。
故选BC。
3. (2023·广东茂名一模)(多选)某科技馆设计了一种磁力减速装置,简化为如题图所示模型。在小车下安装长为L、总电阻为R的正方形单匝线圈,小车和线圈总质量为m。小车从静止开始沿着光滑斜面下滑s后,下边框刚进入匀强磁场时,小车开始做匀速直线运动。已知斜面倾角为θ,磁场上下边界的距离为L,磁感应强度大小为B,方向垂直斜面向上,重力加速度为g,则( )
A. 线圈通过磁场过程中,感应电流方向先顺时针后逆时针方向(俯视)
B. 线框在穿过磁场过程中产生的焦耳热为
C. 线框刚进入磁场上边界时,感应电流的大小为
D. 小车和线圈的总质量为
【答案】AD
【解析】A.线框刚进入磁场上边界时,根据楞次定律可得感应电流的方向为顺时针方向(从斜面上方俯视线框),穿出磁场时,根据楞次定律可得感应电流的方向为逆时针方向,故A正确;
BC.设线框进入磁场时的速度大小为v0,自由下滑过程中,根据动能定理可得
解得
v0=
根据闭合电路的欧姆定律可得
下边框刚进入匀强磁场时,小车开始做匀速直线运动。根据功能关系可得线框穿过磁场的过程中产生的焦耳热为
故BC错误;
D.根据平衡条件可得
解得
故D正确。
故选AD。
4. (2023·广东汕头一模)(多选)依附建筑物架设的磁力缓降高楼安全逃生装置,该装置原理如图可等效为:间距的两根竖直导轨上部连通,人和磁铁固定在一起,沿导轨共同下滑,磁铁产生磁感应强度的匀强磁场。人和磁铁所经位置处,可等效为有一固定导体棒cd与导轨相连,整个装置总电阻始终为,在某次逃生试验中,质量的测试者利用该装置最终以的速度匀速下降,已知与人一起下滑部分装置的质量,重力加速度取,则( )
A. 导体棒cd中电流的方向从d到c
B. 导体棒cd中电流的方向从c到d
C. 下落过程中除安培力的阻力为200N
D. 下落过程中除安培力的阻力为1200N
【答案】AC
【解析】AB.由右手定则可知,导体棒cd中电流的方向从d到c,故A正确,B错误;
CD.导体棒两端电动势为
感应电流
安培力
由左手定则可判断,导体棒cd所受安培力方向向下,根据牛顿第三定律可知磁铁受力向上,大小为
对M和m,由平衡条件
解得
故C正确,D错误
故选AC。
5. (2023·广东深圳一模)某国产直升机在我国某地上空悬停,长度为L的螺旋桨叶片在水平面内顺时针匀速转动(俯视),转动角速度为。该处地磁场的水平分量为,竖直分量为。叶片的近轴端为a,远轴端为b。忽略转轴的尺寸,则叶片中感应电动势为( )
A. ,a端电势高于b端电势B. ,a端电势低于b端电势
C. ,a端电势高于b端电势D. ,a端电势低于b端电势
【答案】D
【解析】我国某地上空地磁场方向有向下的分量,大小为,当螺旋桨叶片在水平面内顺时针匀速转动(俯视)时,根据右手定则可知,a端电势低于b端电势;大小为
故选D。
6. (2023·福建福州2月检测)(多选)如图,两根间距为L的固定平行光滑金属导轨MCN和PDQ,水平部分MC、PD与倾斜部分CN、DQ分别在C、D平滑连接,倾斜轨道与水平面夹角为θ。水平导轨和倾斜导轨间分别存在宽度均为d 、磁感应强度大小均为 B 的磁场区域 I 和 Ⅱ , 区域 I 磁场方向竖直向上,区域Ⅱ磁场方向垂直平面CNQD向下。两根质量均为m、电阻分别为2R和3R的金属棒a、b与导轨垂直放置,b棒置于水平导轨C、D处。a棒以速度v0进入磁场区域 I,从磁场Ⅰ穿出时的速度大小为,与b棒发生弹性碰撞。b棒从C、D处沿倾斜轨道穿过磁场区域Ⅱ并返回C、D处时,速度大小为,所用时间为t。两金属棒始终与导轨垂直且接触良好,导轨电阻不计。则( )
A. a棒在磁场中向右运动过程与b棒在磁场中向上运动过程,回路中感应电流方向相反
B. a棒第一次穿过磁场区域I的过程中,金属棒b上产生的焦耳热为m
C. b棒从开始运动到返回C、D处所用时间
D. 最终a棒停在磁场区域I中距区域I右边界处
【答案】BD
【解析】A.a棒在磁场中向右运动过程产生逆时针方向的感应电流;b棒在磁场中向上运动过程也产生逆时针方向的感应电流,则回路中感应电流方向相同,选项A错误;
B.a棒第一次穿过磁场区域I的过程中,整个回路产生的焦耳热
金属棒b上产生的焦耳热为选项B正确;
C.因ab质量相同,则两棒相碰后交换速度,即碰后a静止,b的速度为,返回到CD时的速度为,取沿斜面向下为正方向,则由动量定理解得选项C错误;
D.当导体棒a经过水平磁场时
其中
当b回到底端时,再次与a交换速度,此时a以速度进入水平磁场,设进入x后停止,则由动量定理其中解得x=d
即最终a棒停在磁场区域I中距区域I右边界处,选项D正确。故选BD。
7. (2023·河北省二模)磁流体发电技术是日前世界上正在研究的新兴技术。如图所示是磁流体发电机示意图,相距为d的平行金属板A、B之间的磁场可看作匀强磁场,磁感应强度大小为B,等离子体(即高温下电离的气体,含有大量正、负带电粒子)以速度v垂直于B且平行于板面的方向进入磁场。金属板A、B和等离子体整体可以看作一个直流电源,将金属板A、B与电阻R相连,当发电机稳定发电时,两板间磁流体的等效电阻为r,则A、B两金属板间的电势差为( )
AB. C. D.
【答案】A
【解析】稳定时,离子不发生偏转,此时离子受到的电场力于洛伦兹力平衡,可得
解得电源的电动势为
A、B两金属板间的电势差
故选A。
8. (2023·河北唐山三模)(多选)如图所示,光滑水平面上静止放置一质量为m、总电阻为r、边长为l的正方形导线框,导线框前方l处平行于边的两虚线间存在竖直向下的匀强磁场,磁场宽度,磁感应强度大小为B。某时刻导线框在水平恒力F作用下开始运动。已知导线框的边进、出磁场时的速度大小相等,则导线框在整个运动过程中,下列说法正确的是( )
A. 导线框在通过磁场区域时先做加速度减小的减速运动后做匀加速运动
B. 导线框在通过磁场区域时先做加速度增大的减速运动后做匀加速运动
C. 边进入磁场时的速度是边进入磁场时速度的
D. 导线框进入磁场所用的时间为
【答案】CD
【解析】AB.由于可知,线圈在磁场中运动时,有一段时间线圈全部处于磁场中,磁通量没有发生变化,没有感应电流,线圈不受安培力作用,此过程线圈做匀加速直线运动,即导线框的边进、出磁场之间的某一段过程做匀加速直线运动,由于导线框的边进、出磁场时的速度大小相等,可知导线框在通过磁场区域时先做减速运动后有可能到达匀速做匀加速运动,最后做减速运动同样可能匀速,在减速过程安培力大于水平恒力,速度减小感应电动势减小,感应电流减小,安培力减小,加速度减小,即导线框在通过磁场区域时先做加速度减小的减速运动有可能达到匀速后做匀加速运动,最后做加速度减小的减速运动有可能最后匀速,AB错误;
C.令边进、出磁场时的速度大小为,边进磁场速度大小为,则有
,,
解得C正确;
D.导线框进入磁场过程的感应电动势的平均值为
感应电流
根据动量定理有
结合上述解得D正确。故选CD。
9. (2023·河北唐山一模)(多选)如图所示,两根光滑足够长且电阻不计的平行金属导轨MNPQ和,固定水在平面上,MN与距离为2l,PQ与距离为l。金属棒a和b的质量分别为2m和m、长度分别为2l与l,金属棒a、b分别垂直放在导轨和上,静止在导轨上。整个装置处于竖直向下的、磁感强度为B的匀强磁场中。现a棒获得水平向右初速度,两棒运动时始终保持平行且a总在上运动,b总在上运动,经过足够长时间后,下列说法正确的( )
A. 金属棒a流过的电荷量是
B. 金属棒a和b均做加速度相同的匀加速直线运动
C. 金属棒a和b均做速度相等的匀速直线运动
D. 回路感应电动势为零
【答案】AD
【解析】CD.因金属棒a向右运动,受安培力向左,则a做减速运动,金属棒b受安培力向右做加速运动,则经过一段时间后,两棒稳定时均做匀速运动,此时回路的感应电流为零,感应电动势为零,则
即
则选项C错误,D正确;
B.根据
则
金属棒a做匀减速直线运动,b做匀加速直线运动,两者加速度大小相同,选项B错误;
A.由动量定理,对a
对b
解得
选项A正确。
故选AD。
10. (2023·湖南永州二模)(多选)如图所示,间距为L、足够长的光滑平行金属导轨的倾角为,底端接一阻值为R的电阻,质量为m的金属棒通过跨过轻质定滑轮的细线与质量为4m的重物相连,滑轮左侧细线与导轨平行,金属棒的电阻为,长度为L,金属棒始终与导轨垂直且接触良好,整个装置处于垂直导轨平面向上、磁感应强度大小为B的匀强磁场中,现将重物由静止释放,重物下落高度h时达到最大速度,已知重力加速度为g,导轨电阻均不计,则重物从释放到达到最大速度的过程中,下列说法正确的是( )
A. 通过电阻R的电量为
B. 金属棒受到的安培力的冲量大小为
C. 金属棒克服安培力做的功为
D. 电阻R上产生的焦耳热为
【答案】AC
【解析】A.通过电阻R的电量为
A正确;
B.安培力的冲量大小为
B错误;
CD.金属棒在磁场中切割磁感线产生感应电流,使金属棒受到斜向下的安培力,金属棒的速度越大,阻碍它运动的安培力也越大,故金属棒在磁场中做加速度减小的加速运动,当受力平衡时,其速度达到最大值vm,此时由感应电动势,感应电流,可得
解得
由能量守恒定律得
解得
则电阻R上产生的焦耳热为
根据功能关系可知金属棒克服安培力做的功为
W=
C正确,D错误。
故选AC。
11. (2023·江苏南通三模)如图所示,两光滑平行长直金属导轨水平固定放置,导轨间存在竖直向下的匀强磁场.两根相同的金属棒ab、cd垂直放置在导轨上,处于静止状态。时刻,对cd棒施加水平向右的恒力F,棒始终与导轨接触良好,导轨电阻不计。两棒的速度vab、vcd和加速度aab、acd随时间t变化的关系图像可能正确的是( )
A. B.
C. D.
【答案】C
【解析】金属棒cd在恒力F作用下由静止开始加速,此时金属棒ab、cd加速度
之后回路中出现感应电流,金属棒cd受到的安培力与恒力F反向,金属棒cd的加速度减小,金属棒ab在安培力作用下开始加速,金属棒cd与金属棒ab的速度差逐渐增大,回路中的电动势逐渐增大,安培力
逐渐增大,金属棒cd加速度减小,金属棒ab加速度增大,当
时,不再变化,回路中的电流不再变化,安培力不变,两棒加速度不变,但是两金属棒的速度仍在增大,故C符合题意,ABD不符合题意。
故选C。
12. (2023·福建福州5月检测)如图,足够长的固定粗糙绝缘斜面,倾角为,平行于斜面底边的边界下侧有垂直斜面向下的匀强磁场,磁感应强度。一质量为的型金属框静置于斜面上,其中边长,处在磁场中与斜面底边平行,框架与斜面间的动摩擦因数为,框架电阻不计且足够长。质量,电阻的金属棒ab横放在U形金属框架上从静止释放,释放位置与边界上方距离为。已知金属棒在框架上无摩擦地运动,且始终与框架接触良好,设框架与斜面间最大静摩擦力等于滑动摩擦力,取。(,)求:
(1)金属棒ab刚进入磁场时,通过框架边的电流大小和方向;
(2)金属棒ab刚进入磁场时,框架的加速度大小;
(3)金属棒ab进入磁场最终达到稳定运动时,金属棒重力的功率。
【答案】(1),电流方向:由N流向M;(2);(3)
【解析】(1)金属棒在框架上无摩擦地运动,设刚进入磁场的速度为,根据动能定理得
解得
进入磁场后,根据法拉第电磁感应定律
根据闭合电路欧姆定律
解得
电流方向:由N流向M。
(2)框架受到斜面的摩擦力方向沿斜面向上,大小为
框架MN边受到安培方向沿斜面向下,大小为
根据牛顿第二定律,框架的加速度为a
代入数据解得
(3)因金属棒和框架整体的重力沿斜面向下的分力与斜面对框架的摩擦力平衡,故金属棒和框架整体沿斜面方向动量守恒,最终金属棒ab与框架分别以、的速度做匀速运动
此时回路的电动势为
电流
金属棒ab匀速运动
联立解得
,
金属棒ab重力的功率
上海2023年高考真题和模拟题物理分项汇编7.动量: 这是一份上海2023年高考真题和模拟题物理分项汇编7.动量,共20页。试卷主要包含了125m;,88×104ND等内容,欢迎下载使用。
上海2023年高考真题和模拟题物理分项汇编17.力学实验: 这是一份上海2023年高考真题和模拟题物理分项汇编17.力学实验,共22页。试卷主要包含了78 ②等内容,欢迎下载使用。
高考物理真题和模拟题分项汇编专题12电磁感应 含解析: 这是一份高考物理真题和模拟题分项汇编专题12电磁感应 含解析,共8页。试卷主要包含了,如图所示,重复上述实验操作等内容,欢迎下载使用。