所属成套资源:2024年新高考数学一轮复习知识梳理与题型归纳全套
2024年新高考数学一轮复习知识梳理与题型归纳第01讲集合(教师版)
展开
这是一份2024年新高考数学一轮复习知识梳理与题型归纳第01讲集合(教师版),共9页。试卷主要包含了集合的有关概念,集合间的基本关系,集合间的基本运算等内容,欢迎下载使用。
知识梳理
1.集合的有关概念
(1)集合元素的三个特性:
确定性、无序性、互异性
(2)集合的三种表示方法:列举法、描述法、图示法.
(3)元素与集合的两种关系:属于,记为∈;不属于,记为∉.
(4)五个特定的集合及其关系图:
N*或N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集.
2.集合间的基本关系
(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,则称A是B的子集,记作A⊆B(或B⊇A).
(2)真子集:如果集合A是集合B的子集,但集合B中至少有一个元素不属于A,则称A是B的真子集.
(3)集合相等:如果A⊆B,并且B⊆A,则A=B.
(4)空集:不含任何元素的集合.空集是任何集合A的子集,是任何非空集合B的真子集.记作∅.
3.集合间的基本运算
(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.
(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.
(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁UA,即∁UA={x|x∈U,且x∉A}.
核心素养分析
在高中数学课程中,集合是刻画一类事物的语言和工具。本单元的学习,可以帮助学生使用集合的语言简洁、准确地表述数学的研究对象,学会用数学的语言表达和交流,积累数学抽象的经验。
能够在现实情境或数学情境中,概括出数学对象的一般特征,并用集合语言予以表达。初步学会用三种语言(自然语言、图形语言、符号语言)表达数学研究对象,并能进行转换。掌握集合的基本关系与基本运算在数学表达中的作用。
重点提升数学抽象和数学运算素养。
题型归纳
题型1集合的基本概念
【例1-1】设集合,,,若,则
A.或或2B.或C.或2D.或2
【分析】分别由,,求出的值,代入观察即可.
【解答】解:若,则,
,
,4,;
若,则或,
时,
,,;
时,(舍,
故选:.
【例1-2】设a,b∈R,集合{1,a+b,a}=eq \b\lc\{\rc\}(\a\vs4\al\c1(0,\f(b,a),b)),则b-a=( )
A.1 B.-1
C.2 D.-2
【解答】解: 因为{1,a+b,a}=eq \b\lc\{\rc\}(\a\vs4\al\c1(0,\f(b,a),b)),a≠0,所以a+b=0,则eq \f(b,a)=-1,所以a=-1,b=1,所以b-a=2.故选C.
【跟踪训练1-1】已知复数,满足集合,,,则 .
【分析】根据集合相等的条件,得到元素关系,即可得到结论.
【解答】解:根据集合相等的条件可知,若,,,
则①或②,
由①得:不存在,不满足条件.
由②得,若,;
则两式相结合得或,
;
故答案为:1.
【跟踪训练1-2】设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为( )
A.3 B.4
C.5 D.6
【解答】解: a∈{1,2,3},b∈{4,5},则M={5,6,7,8},即M中元素的个数为4.故选B.
【跟踪训练1-3】已知实数集合,2,3,的最大元素等于该集合的所有元素之和,则 .
【分析】根据题意求元素的关系.
【解答】解:因为实数集合,2,3,的最大元素等于该集合的所有元素之和,
所以(无解)或者,
解之得.
故答案为.
【名师指导】
与集合中的元素有关问题的求解策略
(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合.
(2)集合元素的三个特性中的互异性对解题的影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.
题型2集合的基本关系
【例2-1】已知集合,,,2,,若,则实数的值为
A.0或2B.0或4C.2或4D.0或2或4
【分析】由得中元素一定在中,求出.
【解答】解:因为,,,2,,,所以,4.
故选:.
【例2-2】已知集合,,,若,则实数的取值范围是 .
【分析】求出集合或,,利用,,能求出实数的取值范围.
【解答】解:集合,
,
或,,
,,
,解得.
实数的取值范围是,.
故答案为:,.
【例2-3】已知集合A={x|-1
相关试卷
这是一份2024年新高考数学一轮复习知识梳理与题型归纳第5讲函数及其表示(教师版),共7页。试卷主要包含了函数的有关概念,函数的三种表示法,分段函数等内容,欢迎下载使用。
这是一份2024年新高考数学一轮复习知识梳理与题型归纳第11讲函数的图象(教师版),共11页。试卷主要包含了利用描点法作函数的图象,利用图象变换法作函数的图象等内容,欢迎下载使用。
这是一份2024年新高考数学一轮复习知识梳理与题型归纳第14讲导数的概念及运算(教师版),共9页。试卷主要包含了导数的概念,基本初等函数的导数公式,复合函数的导数等内容,欢迎下载使用。