- 第07讲 二次函数表达式的确定(含抛物线的变化)(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用) 试卷 1 次下载
- 第07讲 二次函数表达式的确定(含抛物线的变化)(题型突破+专题精练)-备战2024年中考数学一轮复习考点研究(全国通用) 试卷 1 次下载
- 第08讲 二次函数的实际应用(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用) 试卷 1 次下载
- 第09讲 抛物线与几何综合题(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用) 试卷 1 次下载
- 第02讲 一般三角形及其性质(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用) 试卷 0 次下载
- 第02讲 一般三角形及其性质(题型突破+专题精练)-备战2024年中考数学一轮复习考点研究(全国通用) 试卷 0 次下载
第01讲 平面直角坐标系(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用)
展开2、学会运用数形结合思想。数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
3、要学会抢得分点。一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
4、学会运用等价转换思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
5、学会运用分类讨论的思想。如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
6、转化思想:体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
备战2024中考数学一轮复习
第1讲平面直角坐标系
№考向解读
➊考点精析
➋真题精讲
➌题型突破
➍专题精练
第三章函数
第1讲平面直角坐标系
→➊考点精析←
→➋真题精讲←
考向一 有序数对
考向二 点的坐标特征
考向三 对称点的特征
考向四 坐标系中的动点问题
考向五 坐标的平移
考向六 点的坐标规律探索
考向七 坐标综合
第1讲平面直角坐标系
该版块内容是初中代数最重要的部分,是代数的基础,是非常基础也是非常重要的,年年都会考查,分值为6分左右,预计2024年各地中考还将出现,在选填题中出现的可能性较大.
→➊考点精析←
1.有序数对
(1)有顺序的两个数a与b组成的数对,叫做有序数对.平面直角坐标系中的点和有序实数对是一一对应的.(2)经一点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标和纵坐标.有序实数对(a,b)叫做点P的坐标.
2.点的坐标特征
3.轴对称
(1)点(x,y)关于x轴对称的点的坐标(x,-y);(2)点(x,y)关于y轴对称的点的坐标(-x,y).
4.中心对称
两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y).
5.图形在坐标系中的旋转
图形(点)的旋转与坐标变化:
(1)点P(x,y)绕坐标原点顺时针旋转90°,其坐标变为P′(y,-x);
(2)点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P′(-x,-y);
(3)点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P′(-y,x);
(4)点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P′(-x,-y).
6.图形在坐标系中的平移
图形(点)的平移与坐标变化
(1)点P(x,y)向右平移a个单位,其坐标变为P′(x+a,y);
(2)点P(x,y)向左平移a个单位,其坐标变为P′(x-a,y);
(3)点P(x,y)向上平移b个单位,其坐标变为P′(x,y+b);
(4)点P(x,y)向下平移b个单位,其坐标变为P′(x,y-b).
→➋真题精讲←
考向一 有序数对
有序数对的作用:利用有序数对可以在平面内准确表示一个位置.有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.
1.(2023·浙江台州·统考中考真题)如图是中国象棋棋盘的一部分,建立如图所示的平面直角坐标系,已知“車”所在位置的坐标为,则“炮”所在位置的坐标为( ).
A.B.C.D.
2.(2023·贵州·统考中考真题)如图,是贵阳市城市轨道交通运营部分示意图,以喷水池为原点,分别以正东、正北方向为轴、轴的正方向建立平面直角坐标系,若贵阳北站的坐标是,则龙洞堡机场的坐标是_______.
3.(2023·江苏连云港·统考中考真题)画一条水平数轴,以原点为圆心,过数轴上的每一刻度点画同心圆,过原点按逆时针方向依次画出与正半轴的角度分别为的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点的坐标分别表示为,则点的坐标可以表示为__________.
4.(2020·湖北宜昌·中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).
A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列
C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列
5.(2020·山东威海·中考真题)如图①,某广场地面是用..三种类型地砖平铺而成的,三种类型地砖上表面图案如图②所示,现用有序数对表示每一块地砖的位置:第一行的第一块(型)地砖记作,第二块(型)地时记作…若位置恰好为型地砖,则正整数,须满足的条是__________.
考向二 点的坐标特征
1.象限角平分线上的点的坐标特征:
(1)第一、三象限角平分线上的点的横、纵坐标相等;第二、四象限角平分线上的点的横、纵坐标互为相反数;
(2)平行于x轴(或垂直于y轴)的直线上的点的纵坐标相等,平行于y轴(或垂直于x轴)的直线上的点的横坐标相等.
2.点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|,到坐标原点的距离为.
6.(2023·浙江·统考中考真题)在平面直角坐标系中,点位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
7.(2023·湖南·统考中考真题)在平面直角坐标系中,点所在象限是第________象限.
8.(2020·湖北黄冈·中考真题)在平面直角坐标系中,若点在第三象限,则点所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
9.点P(m+3,m﹣2)在直角坐标系的y轴上,则点P的坐标为( )
A.(0,5)B.(5,0)C.(﹣5,0)D.(0,﹣5)
10.若点A(﹣2,n)在x轴上,则点(n+1,n﹣3)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
11.如图,将长为3cm的矩形ABCD放在平面直角坐标系中,若点D(6,3),则A点的坐标为( )
A.B.C.D.
12.已知直角坐标系内有一点M(a,b),且ab=2,则点M的位置在( )
A.第一或第三象限 B.第一象限 C.第三象限 D.坐标轴上
13.若某点位于轴上方,距轴5个单位长,且位于轴的左边,距轴10个单位长,则点 的坐标是( )
A.B.C.D.
考向三 对称点的特征
一般地,点P与点P1关于x轴对称,则横坐标相同,纵坐标互为相反数;点P与点P2关于y轴对称,则纵坐标相同,横坐标互为相反数,点P与点P3关于原点对称,则横、纵坐标分别互为相反数,简单记为“关于谁谁不变,关于原点都改变”.
14.(2023·山东临沂·统考中考真题)某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A,B两处桂花的位置关于小路对称,在分别以两条小路为x,y轴的平面直角坐标系内,若点A的坐标为,则点B的坐标为( )
A.B.C.D.
15.(2023·湖南怀化·统考中考真题)在平面直角坐标系中,点关于x轴对称的点的坐标是( )
A.B.C.D.
16.(2023·四川成都·统考中考真题)在平面直角坐标系中,点关于y轴对称的点的坐标是___________.
17.如图,在坐标平面内,依次作点关于直线的对称点,关于轴对称点,关于轴对称点,关于直线对称点,关于轴对称点,关于轴对称点,…,按照上述变换规律继续作下去,则点的坐标为( )
A.B.C.D.
考向四 坐标系中的动点问题
1.动点问题多数情况下会与分类讨论的数学思想及方程、函数思想结合起来进行.
2.把动点产生的线段长用时间变量t表示出来以后,动点问题就“静态化”处理了.
18.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( )
A.横向拉伸为原来的2倍B.纵向拉伸为原来的2倍
C.横向压缩为原来的D.纵向压缩为原来的
19.在平面坐标系中,已知线段,且的坐标分别为,点为线段的中点.
(1)线段与轴的位置关系是
(2)求点的坐标。
(3)在轴上是否存在点,使得三角形面积为3.若存在,求出点的坐标;若不存在,请说明理由.
考向五 坐标的平移
20.(2023·浙江杭州·统考中考真题)在直角坐标系中,把点先向右平移1个单位,再向上平移3个单位得到点.若点的横坐标和纵坐标相等,则( )
A.2B.3C.4D.5
21.(2023·浙江绍兴·统考中考真题)在平面直角坐标系中,将点先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是( )
A.B.C.D.
22.(2023·浙江金华·统考中考真题)如图,两个灯笼的位置的坐标分别是,将点向右平移2个单位,再向上平移1个单位得到点,则关于点的位置描述正确是( )
A.关于轴对称B.关于轴对称
C.关于原点对称D.关于直线对称
23.(2023·山东滨州·统考中考真题)如图,在平面直角坐标系中,的三个顶点坐标分别为.若将向左平移3个单位长度得到,则点A的对应点的坐标是___________.
考向六 点的坐标规律探索
这类问题通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,
并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.
24.(2023·山东聊城·统考中考真题)如图,在直角坐标系中,各点坐标分别为,,.先作关于x轴成轴对称的,再把平移后得到.若,则点坐标为( )
A.B.C.D.
25.一个点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0),且每秒移动一个单位,那么第30秒时点所在位置的坐标是( )
A.(0,5)B.(5,5)C.(0,11)D.(11,11)
26.平面直角坐标系中,点,,经过点的直线轴,点是直线上的一个动点,当线段的长度最短时,点的坐标为( )
A.B.C.D.
27.如图,在平面直角坐标系上有个点,点第1次向上跳动1个单位至点,紧接着第2次向右跳动2个单位至点,第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点第2019次跳动至点的坐标是( )
A.B.
C.D.
考向七 坐标综合应用
28.如图所示的方格纸中,每个小方格的边长都是1,点,,.
(1)写出A,B,C关于x轴对称点,,的坐标;并作关于y轴对称的;
(2)在x轴上求作一点P,使最小,画出P,并直接写出P点的坐标.
29.(1)已知点的横坐标减纵坐标的差为6,求这个点到轴、轴的距离;
(2)已知点到两坐标轴的距离相等,且在第二象限,求点的坐标;
(3)已知线段平行于轴,点的坐标为,且,求点的坐标.
30.已知点A(a,3),点C(5,c),点B的纵坐标为6且横纵坐标互为相反数,直线AC轴,直线CB轴:
(1)写出A、B、C三点坐标;
(2)求△ABC的面积;
(3)若P为线段OB上动点且点P的横、纵坐标互为相反数,当△BCP的面积大于12小于16时,求点P横坐标取值范围.
点的位置
横坐标符号
纵坐标符号
第一象限
﹢
+
第二象限
-
+
第三象限
-
-
第四象限
+
-
x轴上
正半轴上
+
0
负半轴上
-
0
y轴上
正半轴上
0
+
负半轴上
0
-
原点
0
0
第04讲 一次函数的综合应用(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用): 这是一份第04讲 一次函数的综合应用(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用),文件包含第四讲一次函数的综合应用考点精析+真题精讲原卷版docx、第四讲一次函数的综合应用考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
第02讲 变量和函数及其图象性质探究(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用): 这是一份第02讲 变量和函数及其图象性质探究(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用),文件包含第二讲变量和函数及其图象性质探究考点精析+真题精讲原卷版docx、第二讲变量和函数及其图象性质探究考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
第04讲 一次不等式(组)(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用): 这是一份第04讲 一次不等式(组)(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用),文件包含第四讲一次不等式组考点精析+真题精讲原卷版docx、第四讲一次不等式组考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。