所属成套资源:中考数学常见几何模型全归纳提分精练(原卷版+解析)
中考数学常见几何模型全归纳提分精练专题03手拉手模型(从全等到相似)(原卷版+解析)
展开
这是一份中考数学常见几何模型全归纳提分精练专题03手拉手模型(从全等到相似)(原卷版+解析),共48页。试卷主要包含了手拉手模型等内容,欢迎下载使用。
模型1.手拉手模型(全等模型)
【模型解读】
将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。
【常见模型及证法】
(等腰)
(等边)
(等腰直角)
公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。
对应操作:左手拉左手(即连结BD),右手拉右手(即连结CE),得。
1. (2023·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.
(1)问题发现:如图1,若和是顶角相等的等腰三角形,BC,DE分别是底边.求证:;
(2)解决问题:如图2,若和均为等腰直角三角形,,点A,D,E在同一条直线上,CM为中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.
图1 图2
2. (2023·黑龙江·中考真题)和都是等边三角形.
(1)将绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有(或)成立;请证明.(2)将绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;(3)将绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.
3. (2023·吉林·九年级期末)如图①,在中,,,点,分别在边,上,且,此时,成立.
(1)将绕点逆时针旋转时,在图②中补充图形,并直接写出的长度;(2)当绕点逆时针旋转一周的过程中,与的数量关系和位置关系是否仍然成立?若成立,请你利用图③证明,若不成立请说明理由;(3)将绕点逆时针旋转一周的过程中,当,,三点在同一条直线上时,请直接写出的长度.
模型2.手拉手模型(旋转相似模型)
【模型解读与图示】
旋转放缩变换,图中必有两对相似三角形.
1. (2023·四川达州·中考真题)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形和等腰直角三角形,按如图1的方式摆放,,随后保持不动,将绕点C按逆时针方向旋转(),连接,,延长交于点F,连接.该数学兴趣小组进行如下探究,请你帮忙解答:
(1)【初步探究】如图2,当时,则_____;
(2)【初步探究】如图3,当点E,F重合时,请直接写出,,之间的数量关系:_________;
(3)【深入探究】如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.(4)【拓展延伸】如图5,在与中,,若,(m为常数).保持不动,将绕点C按逆时针方向旋转(),连接,,延长交于点F,连接,如图6.试探究,,之间的数量关系,并说明理由.
2. (2023·山东烟台·中考真题)
(1)【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.
(2)【类比探究】如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出的值.(3)【拓展提升】如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且==.连接BD,CE.①求的值;②延长CE交BD于点F,交AB于点G.求sin∠BFC的值.
3. (2023·山东·东营市一模)【提出问题】
(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.
【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.
4. (2023·山西长治·九年级期末)问题情境:如图1,在△ABC中,AB=6,AC=5,点D,E分别在边AB,AC上,且.数学思考:
(1)在图1中,的值为 ;(2)图1中△ABC保持不动,将△ADE绕点A按逆时针方向旋转到图2的位置,其它条件不变,连接BD,CE,则(1)中的结论是否仍然成立?并说明理由;(3)拓展探究:在图2中,延长BD,分别交AC,CE于点F,P,连接AP,得到图3,探究∠APE与∠ABC之间有何数量关系,并说明理由;(4)若将△ADE绕点A按逆时针方向旋转到图4的位置,连接BD,CE,延长BD交CE的延长线于点P,BP交AC于点F,则(3)中的结论是否仍然成立,若成立,请说明理由;若不成立,请直接写出∠APE与∠ABC之间的数量关系.
课后专项训练:
1. (2023·湖南·中考真题)如图,点是等边三角形内一点,,,,则与的面积之和为( )
A.B.C.D.
2. (2023·四川宜宾·中考真题)如图,和都是等腰直角三角形,,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①;②;③若,则;④在内存在唯一一点P,使得的值最小,若点D在AP的延长线上,且AP的长为2,则.其中含所有正确结论的选项是( )
A.①②④B.①②③C.①③④D.①②③④
3. (2023·湖北·襄阳市樊城区青泥湾中学九年级阶段练习)如图,已知AOB和MON都是等腰直角三角形(OA
相关试卷
这是一份中考数学常见几何模型全归纳提分精练专题05一线三等角(K型图)模型(从全等到相似)(原卷版+解析),共59页。试卷主要包含了一线三等角,一线三等角模型,一线三直角模型,8cm;5等内容,欢迎下载使用。
这是一份中考数学常见几何模型全归纳提分精练专题04对角互补模型(从全等到相似)(原卷版+解析),共45页。试卷主要包含了对角互补模型等内容,欢迎下载使用。
这是一份中考数学常见几何模型全归纳提分精练专题02全等模型-半角模型(原卷版+解析),共37页。试卷主要包含了半角模型,5=40,BD=90×0等内容,欢迎下载使用。