重庆市杨家坪中学2023-2024学年高三下学期第二次月考数学试题(Word版附解析)
展开
这是一份重庆市杨家坪中学2023-2024学年高三下学期第二次月考数学试题(Word版附解析),文件包含重庆市杨家坪中学2023-2024学年高三下学期第二次月考数学试题原卷版docx、重庆市杨家坪中学2023-2024学年高三下学期第二次月考数学试题Word版含解析docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
总分: 150分 时间: 120分钟
一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知全集,,则集合为( )
A. B. C. D.
2. 已知向量则向量在向量上的投影向量为( )
A. B. C. D.
3. 记为等差数列的前项和,若则数列的前2024项和为( )
A. B. C. D.
4. 北京大兴国际机场拥有世界上最大的单一航站楼,并拥有机器人自动泊车系统,解决了停车满、找车难的问题.现有5辆车停放在8个并排的泊车位上,要求停放的车辆相邻,箭头表示车头朝向,则不同的泊车方案有( )种.
A. 120B. 240C. 480D. 960
5. “古典正弦”定义为:在如图所示的单位圆中,当圆心角的范围为时,其所对的“古典正弦”为(为的中点).根据以上信息,当圆心角对应弧长时,的“古典正弦”值为( )
A. B. C. D.
6. 一般来说,输出信号功率用高斯函数来描述,定义为,其中为输出信号功率最大值(单位:),为频率(单位:),为输出信号功率数学期望,为输出信号的方差,带宽是光通信中一个常用的指标,是指当输出信号功率下降至最大值一半时,信号的频率范围,即对应函数图象的宽度。现已知输出信号功率为(如图所示),则其带宽为( )
A. B. C. D.
7. 如图,圆锥的高,底面直径是圆上一点,且,若与所成角为,则( )
A. B. C. D.
8. 已知分别是双曲线的左,右顶点,是双曲线上的一动点,直线,与交于两点,的外接圆面积分别为,则的最小值为( )
A. B. C. D. 1
二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9. 为调研加工零件效率,调研员通过试验获得加工零件个数与所用时间(单位:)的5组数据为:,根据以上数据可得经验回归方程为:,则( )
A.
B. 回归直线必过点
C. 加工60个零件的时间大约为
D. 若去掉,剩下4组数据的经验回归方程会有变化
10. 在△中,内角所对的边分别为a、b、c,则下列说法正确的是( )
A.
B. 若,则
C.
D. 若,且,则△为等边三角形
11. 已知函数的定义域为R,满足,且,则( )
A.
B. 为奇函数
C.
D.
三、填空题:本题共3 小题,每小题5分,共15分.
12. 复数 则 ______
13. 已知抛物线过点,则拋物线的准线方程为__________.
14 己知正实数满足则当 取得最小值时,______
四、解答题:本题共5 小题,共77分. 解答应写出文字说明、证明过程或演算步骤.
15. “村BA”后,贵州“村超”又火出圈!所谓“村超”,其实是目前火爆全网的贵州乡村体育赛事——榕江(三宝侗寨)和美乡村足球超级联赛,被大家简称为“村超”.“村超”的民族风、乡土味、欢乐感,让每个人尽情享受着足球带来的快乐.某校为了丰富学生课余生活,组建了足球社团.足球社团为了解学生喜欢足球是否与性别有关,随机抽取了男、女同学各 50名进行调查,部分数据如表所示:
(1)根据所给数据完成上表,依据α=0.005的独立性检验,能否有99.5%的把握认为该中学学生喜欢足球与性别有关?
(2)社团指导老师从喜欢足球的学生中抽取了2名男生和1名女生示范定点射门.据统计,这两名男生进球的概率均为 ,这名女生进球的概率为 ,每人射门一次,假设各人进球相互独立,求3 人进球总次数X的分布列和数学期望.
附:
16. 如图1,在四边形中,,,,将沿着折叠,使得(如图2),过D作,交于点E.
(1)证明:;
(2)求;
(3)求平面与平面的夹角的余弦值.
17. 设为数列的前项和,已知是首项为、公差为的等差数列.
(1)求通项公式;
(2)令,为数列的前项积,证明:.
18. 已知P为平面直角坐标系xOy上的动点,记其轨迹为曲线C.
(1)请从以下两个条件中选择一个,求对应曲线C的方程.
①已知点,直线,动点P到点T的距离与到直线l的距离之比为;
②已知点A 是圆F 上的任意一点,点F为圆F的圆心,点与点F关于原点对称,线段的垂直平分线与线段AF交于点P;
注:如果选择多个条件分别作答,则按第一个解答计分.
(2)延长OP至, 使,点的轨迹为曲线E,过点P的直线交曲线E于M,N两点,求面积的最大值.
19. 关于的函数,我们曾在必修一中学习过“二分法”求其零点近似值.现结合导函数,介绍另一种求零点近似值的方法——“牛顿切线法”.
(1)证明:有唯一零点,且;
(2)现在,我们任取(1,a)开始,实施如下步骤:
在处作曲线切线,交轴于点;
在处作曲线的切线,交轴于点;
……
在处作曲线的切线,交轴于点;
可以得到一个数列,它的各项都是不同程度的零点近似值.
(i)设,求的解析式(用表示);
(ii)证明:当,总有.
喜欢足球
不喜欢足球
合计
男生
20
女生
15
合计
100
α
0.1
0.05
0.01
0005
0.001
x
2.706
3.841
6.635
7.879
10.828
相关试卷
这是一份重庆市杨家坪中学2023-2024学年高二上学期第三次月考数学试题(Word版附解析),共21页。试卷主要包含了在等差数列中,,,则公差,双曲线的渐近线方程是,数列的前n项和为,且满足,,则,若实数、满足条件,则的范围是,已知椭圆的左、右焦点分别为,已知直线,则下列结论正确的是等内容,欢迎下载使用。
这是一份重庆市九龙坡区杨家坪中学2024届高三上学期第五次月考数学试题(Word版附解析),共24页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份重庆市杨家坪中学2023-2024学年高二上学期第三次月考数学试题(Word版附解析),共22页。试卷主要包含了考试结束后,将答题卡交回, 若实数、满足条件,则的范围是, 已知椭圆的左、右焦点分别为, 已知直线,则下列结论正确的是等内容,欢迎下载使用。