终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    中考专题湖南省武冈市中考数学真题汇总 卷(Ⅱ)(含答案解析)

    立即下载
    加入资料篮
    中考专题湖南省武冈市中考数学真题汇总 卷(Ⅱ)(含答案解析)第1页
    中考专题湖南省武冈市中考数学真题汇总 卷(Ⅱ)(含答案解析)第2页
    中考专题湖南省武冈市中考数学真题汇总 卷(Ⅱ)(含答案解析)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考专题湖南省武冈市中考数学真题汇总 卷(Ⅱ)(含答案解析)

    展开

    这是一份中考专题湖南省武冈市中考数学真题汇总 卷(Ⅱ)(含答案解析),共28页。试卷主要包含了下列各式中,不是代数式的是,如图,A等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图(1)是一个三角形,分别连接这个三角形三边中点得到图(2),再分别连接图(2)中间的小三角形三边中点得到图(3),按这种方法继续下去,第6个图形有( )个三角形.
    A.20B.21C.22D.23
    2、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
    A.米B.10米C.米D.12米
    3、整式的值随x取值的变化而变化,下表是当x取不同值时对应的整式的值:
    则关于x的方程的解为( )
    A.B.C.D.
    4、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
    A.B.C.D.
    5、下列各式中,不是代数式的是( )
    A.5ab2B.2x+1=7C.0D.4a﹣b
    6、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )
    A.B.C.D.
    7、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.10B.11C.12D.13
    8、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
    A.2 个B.3 个C.4 个D.5 个.
    9、如图是由一些完全相同的小立方块搭成的几何体从左面、上面看到的形状图.搭成这个几何体所用的小立方块的个数至少是( )
    A.3个B.4个C.5个D.6个
    10、如图,在平面直角坐标系xOy中,已知点A(1,0),B(3,0),C为平面内的动点,且满足∠ACB=90°,D为直线y=x上的动点,则线段CD长的最小值为( )
    A.1B.2C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、平面内,,C为内部一点,射线平分,射找平分,射线平分,当时,的度数是____________.
    2、若反比例函数的图象位于第一、第三象限,则的取值范围是_______.
    3、如图,两个多边形的面积分别为13和22,两个阴影部分的面积分别为a,,则的值为______.
    4、为庆祝建党100周年,某邮政局推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.如下图,现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的可能性大小是____________.
    5、如图,一架梯子AB斜靠在左墙时,梯子顶端B距地面2.4m,保持梯子底端A不动,将梯子斜靠在右墙时,梯子顶端C距地面2m,梯子底端A到右墙角E的距离比到左墙角D的距离多0.8m,则梯子的长度为_____m.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在中,,.
    (1)尺规作图:
    ①作边的垂直平分线交于点,交于点;
    ②连接,作的平分线交于点;(要求:保留作图痕迹,不写作法)
    (2)在(1)所作的图中;求的度数.
    解:∵垂直平分线段,
    ∴,(_________)(填推理依据)
    ∴,(__________)(填推理依据)
    ∵,∴,
    ∵,
    ∴__________,
    ∴__________,
    ∵平分,
    ∴__________.
    2、某演出票价为110元/人,若购买团体票有如下优惠:
    例如:200人作为一个团体购票,则需要支付票款元.甲、乙两个班全体学生准备去观看该演出,如果两个班作为一个团体去购票,则应付票款10065元.请列方程解决下列问题:
    (1)已知两个班总人数超过100人,求两个班总人数;
    (2)在(1)条件下,若甲班人数多于50人.乙班人数不足50人,但至少25人,如果两个班单独购票,一共应付票款11242元.求甲、乙两班分别有多少人?
    3、如图,在平面直角坐标系中,,,.
    (1)在图中作出关于轴的对称图形,并直接写出点的坐标;
    (2)求的面积;
    (3)点与点关于轴对称,若,直接写出点的坐标.
    4、已知:如图,点A,F,C,D在同一条直线上,点B和点E在直线AD的两侧,且AF=DC,· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    BC∥FE,∠A=∠D.求证:AB=DE.
    5、在平面直角坐标系xOy中,已知点A(1,0)和点B(5,0).对于线段AB和直线AB外的一点C,给出如下定义:点C到线段AB两个端点的连线所构成的夹角∠ACB叫做线段AB关于点C的可视角,其中点C叫做线段AB的可视点.
    (1)在点D(-2,2)、E(1,4)、F(3,-2)中,使得线段AB的可视角为45°的可视点是 ;
    (2)⊙P为经过A,B两点的圆,点M是⊙P上线段AB的一个可视点.
    ① 当AB为⊙P的直径时,线段AB的可视角∠AMB为 度;
    ② 当⊙P的半径为4时,线段AB的可视角∠AMB为 度;
    (3)已知点N为y轴上的一个动点,当线段AB的可视角∠ANB最大时,求点N的坐标.
    -参考答案-
    一、单选题
    1、B
    【分析】
    由第一个图中1个三角形,第二个图中5个三角形,第三个图中9个三角形,每次递增4个,即可得出第n个图形中有(4n-3)个三角形.
    【详解】
    解:由图知,第一个图中1个三角形,即(4×1-3)个;
    第二个图中5个三角形,即(4×2-3)个;
    第三个图中9个三角形,即(4×3-3)个;

    ∴第n个图形中有(4n-3)个三角形.
    ∴第6个图形中有个三角形
    故选B
    【点睛】
    本题考查了图形变化的一般规律问题.能够通过观察,掌握其内在规律是解题的关键.
    2、B
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    3、A
    【分析】
    根据等式的性质把变形为;再根据表格中的数据求解即可.
    【详解】
    解:关于x的方程变形为,
    由表格中的数据可知,当时,;
    故选:A.
    【点睛】
    本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解.
    4、D
    【分析】
    根据题意得出∠1=15°,再求∠1补角即可.
    【详解】
    由图形可得
    ∴∠1补角的度数为
    故选:D.
    【点睛】
    本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    5、B
    【分析】
    根据代数式的定义即可判定.
    【详解】
    A. 5ab2是代数式;
    B. 2x+1=7是方程,故错误;
    C. 0是代数式;
    D. 4a﹣b是代数式;
    故选B.
    【点睛】
    此题主要考查代数式的判断,解题的关键是熟知:代数式的定义:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独的一个数或一个字母也是代数式.
    6、D
    【分析】
    设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.
    【详解】
    解:设半径为r,如解图,过点O作,
    ∵OB=OE,
    ∴,
    ∵四边形ABCD为矩形,
    ∴∠C=90°=∠OFB,∠OBF=∠DBC,
    ∴.
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴.
    在中,,即,
    又∵为的切线,
    ∴,
    ∴,
    解得或0(不合题意舍去).
    故选D.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.
    7、A
    【分析】
    作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.
    【详解】
    解:如图,作正多边形的外接圆,连接AO,BO,
    ∴∠AOB=2∠ADB=36°,
    ∴这个正多边形的边数为=10.
    故选:A.
    【点睛】
    此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.
    8、C
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
    (2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
    (3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
    (4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
    (5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
    故选C.
    【点睛】
    本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    9、C
    【分析】
    根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,从而得到上层至少1块,底层2行至少有3+1=4块,即可求解.
    【详解】
    解:根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,
    所以上层至少1块,底层2行至少有3+1=4块,
    所以搭成这个几何体所用的小立方块的个数至少是1+4=5块.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故选:C
    【点睛】
    本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从左面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
    10、C
    【分析】
    取AB的中点E,过点E作直线y=x的垂线,垂足为D,求出DE长即可求出答案.
    【详解】
    解:取AB的中点E,过点E作直线y=x的垂线,垂足为D,
    ∵点A(1,0),B (3,0),
    ∴OA=1,OB=3,
    ∴OE=2,
    ∴ED=2×=,
    ∵∠ACB=90°,
    ∴点C在以AB为直径的圆上,
    ∴线段CD长的最小值为−1.
    故选:C.
    【点睛】
    本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.
    二、填空题
    1、45°或15°
    【解析】
    【分析】
    根据角平分线的定义和角的运算,分射线OD在∠AOC外部和射线OD在∠AOC内部求解即可.
    【详解】
    解:∵射线平分,射找平分,
    ∴∠MOC= ∠AOC,∠NOC= ∠BOC,
    ∴∠MON=∠MOC+∠NOC=∠AOC+∠BOC=∠AOB=60°,
    ∵射线平分,
    ∴∠MOD= ∠MON=30°,
    若射线OD在∠AOC外部时,如图1,
    则∠COD=∠MOD-∠MOC=30°-∠AOC,
    即2∠COD=60°-∠AOC,
    ∵,
    ∴,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解得:∠AOC=45°或15°;
    若射线OD在∠AOC内部时,如图2,
    则∠COD=∠MOC-∠MOD=∠AOC-30°,
    ∴2∠COD=∠AOC-60°,即∠AOC-2∠COD=60°,不满足,
    综上,∠AOC=45°或15°,
    故答案为:45°或15°.

    【点睛】
    本题考查角平分线的定义、角的运算,熟练掌握角平分线的定义和角的有关计算,利用分类讨论思想求解是解答的关键.
    2、
    【解析】
    【分析】
    根据反比例函数的性质解答.
    【详解】
    解:∵反比例函数的图象位于第一、第三象限,
    ∴k-1>0,
    ∴,
    故答案为:.
    【点睛】
    此题考查了反比例函数的性质:当k>0时,函数图象的两个分支分别在第一、三象限内;当k∠AM1B
    ∴∠ANB>∠AN1B
    ∵∠AN1B=∠AN2B
    ∴∠ANB>∠AN2B
    ∴当y轴与⊙M相切于点N时,∠ANB的值最大.
    在Rt△AMC中,AM=r=3,AC=2
    ∴MC=
    ∵MN⊥y轴,MC⊥AB,
    ∴四边形OCMN为矩形.
    ∴ON=MC=
    ∴N(0,)
    同理,当点N在y轴负半轴时,坐标为(0,- )
    综述所述,N(0,)或(0,-).
    【点睛】
    本题考查了圆周角定理,将可视角的定义转化为圆内弦AB的圆周角是解题的关键,再结合图象计算即可.
    x
    -1
    0
    1
    2
    3
    -8
    -4
    0
    4
    8
    购票人数
    不超过50人的部分
    超过50人,但不超过100人的部分
    超过100人的部分
    优惠方案
    无优惠
    每线票价优惠20%
    每线票价优惠50%

    相关试卷

    模拟真题湖南省武冈市中考数学三年高频真题汇总 卷(Ⅲ)(含答案解析):

    这是一份模拟真题湖南省武冈市中考数学三年高频真题汇总 卷(Ⅲ)(含答案解析),共32页。

    中考数学湖南省武冈市中考数学历年真题汇总 (A)卷(含答案详解):

    这是一份中考数学湖南省武冈市中考数学历年真题汇总 (A)卷(含答案详解),共29页。试卷主要包含了下列方程变形不正确的是等内容,欢迎下载使用。

    【真题汇总卷】湖南省武冈市中考数学五年真题汇总 卷(Ⅲ)(含答案详解):

    这是一份【真题汇总卷】湖南省武冈市中考数学五年真题汇总 卷(Ⅲ)(含答案详解),共28页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map