模拟真题湖南省怀化市中考数学第一次模拟试题(含答案解析)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若和是同类项,且它们的和为0,则mn的值是( )
A.-4B.-2C.2D.4
2、如图所示,在长方形ABCD中,,,且,将长方形ABCD绕边AB所在的直线旋转一周形成圆柱甲,再将长方形ABCD绕边BC所在直线旋转一周形成圆柱乙,记两个圆柱的侧面积分別为、.下列结论中正确的是( )
A.B.C.D.不确定
3、下列图形是全等图形的是( )
A.B.C.D.
4、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
A.B.C.D.
5、如图,E、F分别是正方形ABCD的边CD、BC上的点,且,AF、BE相交于点G,下列结论中正确的是( )
①;②;③;④.
A.①②③B.①②④C.①③④D.②③④
6、用符号表示关于自然数x的代数式,我们规定:当x为偶数时,;当x为奇数时,.例如:,.设,,,…,.以此规律,得到一列数,,,…,,则这2022个数之和等于( )
A.3631B.4719C.4723D.4725
7、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.D.
8、整式的值随x取值的变化而变化,下表是当x取不同值时对应的整式的值:
则关于x的方程的解为( )
A.B.C.D.
9、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )
A.B.C.D.
10、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如:由图1可得等式:.
(1)由图2可得等式:________;
(2)利用(1)中所得到的结论,解决下面的问题:已知且,则_______.
2、计算:2a2﹣(a2+2)=_______.
3、如图,将边长为2的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、如图,在中,,,,蚂蚁甲从点A出发,以1.5cm/s的速度沿着三角形的边按的方向行走,甲出发1s后蚂蚁乙从点A出发,以2cm/s的速度沿着三角形的边按的方向行走,那么甲出发________s后,甲乙第一次相距2cm.
5、如图是两个全等的三角形,图中字母表示三角形的边长,则∠的度数为________º.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在中,,于点,为边上一点,连接与交于点.为外一点,满足,,连接.
(1)求证:;
(2)求证:.
2、某中学有一块长30m,宽20m的长方形空地,计划在这块空地上划分出部分区域种花,小明同学设计方案如图,设花带的宽度为x米.
(1)请用含x的式子表示空白部分长方形的面积;(要化简)
(2)当花带宽2米时,空白部分长方形面积能超过400m2吗?请说明理由.
3、(1)探究:如图1,ABCDEF,试说明.
(2)应用:如图2,ABCD,点在、之间,与交于点,与交于点.若,,则的大小是多少?
(3)拓展:如图3,直线在直线、之间,且ABCDEF,点、分别在直线、上,点是直线上的一个动点,且不在直线上,连接、.若,则 度(请直接写出答案).
4、定义:两边的平方和与这两边乘积的差等于第三边平方的三角形叫做“和谐三角形”.如图1,在ABC中,若AB2AC2ABACBC2,则ABC是“和谐三角形”.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)等边三角形一定是“和谐三角形”,是______命题(填“真”或“假”).
(2)若RtABC中,C90,ABc,ACb,BCa,且ba,若ABC 是“和谐三角形”,求a:b:c.
5、如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C,己知点,此抛物线对称轴为.
(1)求抛物线的解析式;
(2)将抛物线向下平移t个单位长度,使平移后所得抛物线的顶点落在内(包括的边界),求t的取值范围;
(3)设点P是抛物线上任一点,点Q在直线上,能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标:若不能,请说明理由.
-参考答案-
一、单选题
1、B
【分析】
根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
【详解】
解:∵和是同类项,且它们的和为0,
∴2+m=3,n-1=-3,
解得m=1,n=-2,
∴mn=-2,
故选:B.
【点睛】
此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
2、C
【分析】
根据公式,得=,=,判断选择即可.
【详解】
∵=,=,
∴=.
故选C.
【点睛】
本题考查了圆柱体的形成及其侧面积的计算,正确理解侧面积的计算公式是解题的关键.
3、D
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:A、不是全等图形,故本选项不符合题意;
B、不是全等图形,故本选项不符合题意;
C、不是全等图形,故本选项不符合题意;
D、全等图形,故本选项符合题意;
故选:D
【点睛】
本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.
4、B
【分析】
根据三角形的中线的定义判断即可.
【详解】
解:∵AD、BE、CF是△ABC的三条中线,
∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
故A、C、D都不一定正确;B正确.
故选:B.
【点睛】
本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
5、B
【分析】
根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.
【详解】
解:∵四边形ABCD是正方形,
∴,,
在与中,
,
∴,
∴,①正确;
∵,
,
∴,
∴,
∴,②正确;
∵GF与BG的数量关系不清楚,
∴无法得AG与GE的数量关系,③错误;
∵,
∴,
∴,
即,④正确;
综上可得:①②④正确,
故选:B.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.
6、D
【分析】
根据题意分别求出x2=4,x3=2,x4=1,x5=4,…,由此可得从x2开始,每三个数循环一次,进而继续求解即可.
【详解】
解:∵x1=8,
∴x2=f(8)=4,
x3=f(4)=2,
x4=f(2)=1,
x5=f(1)=4,
…,
从x2开始,每三个数循环一次,
∴(2022-1)÷3=6732,
∵x2+x3+x4=7,
∴=8+673×7+4+2=4725.
故选:D.
【点睛】
本题考查数字的变化规律,能够通过所给的数,通过计算找到数的循环规律是解题的关键.
7、B
【分析】
根据三角尺可得,根据三角形的外角性质即可求得
【详解】
解:
故选B
【点睛】
本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
8、A
【分析】
根据等式的性质把变形为;再根据表格中的数据求解即可.
【详解】
解:关于x的方程变形为,
由表格中的数据可知,当时,;
故选:A.
【点睛】
本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解.
9、A
【分析】
作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
【详解】
解:如图,作点A关于x轴的对称点,则PA=,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴≤(当P、、B共线时取等号),
连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
设直线的函数表达式为y=kx+b,
将(1,-1)、B(2,-3)代入,得:
,解得:,
∴y=-2x+1,
当y=0时,由0=-2x+1得:x=,
∴点P坐标为(,0),
故选:A
【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
10、B
【分析】
如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
【详解】
解:如图:连接OB,
∵是的切线,B为切点
∴∠OBA=90°
∵
∴∠COB=90°-42°=48°
∴=∠COB=24°.
故选B.
【点睛】
本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
二、填空题
1、 2
【解析】
【分析】
(1)方法一:直接利用正方形的面积公式可求出图形的面积;方法二:利用图形的面积等于9部分的面积之和,根据方法一和方法二的结果相等建立等式即可得;
(2)先将已知等式利用完全平方公式、整式的乘法法则变形为,再· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
利用(1)的结论可得,从而可得,由此即可得出答案.
【详解】
解:(1)方法一:图形的面积为,
方法二:图形的面积为,
则由图2可得等式为,
故答案为:;
(2),
,
,
利用(1)的结论得:,
,
,即,
,
,
故答案为:2.
【点睛】
本题考查了完全平方公式与图形面积、整式乘法的应用,熟练掌握完全平方公式和整式的运算法则是解题关键.
2、##-2+a2
【解析】
【分析】
根据整式的加减运算法则即可求出答案.
【详解】
解:原式=2a2-a2-2
=.
【点睛】
本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,特别注意括号前面是负号去掉括号和负号括号里面各项都要变号.本题属于基础题型.
3、(-,1)
【解析】
【分析】
首先过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,易证得△AOE≌△OCD(AAS),则可得CD=OE=1,OD=AE=,继而求得答案.
【详解】
解:过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,
则∠ODC=∠AEO=90°,
∴∠OCD+∠COD=90°,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵四边形OABC是正方形,
∴OC=OA,∠AOC=90°,
∴∠COD+∠AOE=90°,
∴∠OCD=∠AOE,
在△AOE和△OCD中,
,
∴△AOE≌△OCD(AAS),
∴CD=OE=1,OD=AE=,
∴点C的坐标为:(-,1).
故答案为:(-,1).
【点睛】
本题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.注意准确作出辅助线、证得△AOE≌△OCD是解此题的关键.
4、4
【解析】
【分析】
根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.
【详解】
解:根据题意,
∵,,,
∴周长为:(cm),
∵甲乙第一次相距2cm,则甲乙没有相遇,
设甲行走的时间为t,则乙行走的时间为,
∴,
解得:;
∴甲出发4秒后,甲乙第一次相距2cm.
故答案为:4.
【点睛】
本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确的列出方程.
5、70
【解析】
【分析】
如图(见解析),先根据三角形的内角和定理可得,再根据全等三角形的性质即可得.
【详解】
解:如图,由三角形的内角和定理得:,
图中的两个三角形是全等三角形,在它们中,边长为和的两边的夹角分别为和,
,
故答案为:70.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了三角形的内角和定理、全等三角形的性质,熟练掌握全等三角形的性质是解题关键.
三、解答题
1、
(1)见解析
(2)见解析
【分析】
(1)如图,先证明,再根据全等三角形的判定证明结论即可;
(2)根据全等三角形的性质和等腰三角形的三线合一证明,再根据全等三角形的判定与性质证明即可.
(1)
证明:(1)证明:∵,
∴,
即,
在和中,
∵,
∴;
(2)
证明:∵,
∴,,
∵,于点,
∴.
∵,
∴,
在和中,
∵,
∴,
∴,
∴.
【点睛】
本题考查全等三角形的判定与性质、等腰三角形的性质,熟练掌握全等三角形的判定与性质是解答的关键.
2、
(1)
(2)超过,理由见解析
【分析】
(1)空白部分长方形的两条边长分别是(30-2x)m,(20-x)m.得空白部分长方形的面积;
(2)通过有理数的混合运算得结果与400进行比较.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)
空白部分长方形的两条边长分别是(30-2x)m,(20-x)m.
空白部分长方形的面积:(30-2x)(20-x)=(2x2-70x+600) m2.
(2)
超过.
∵2×22-70×2+600=468(m2),
∵468>400,
∴空白部分长方形面积能超过400 m2.
【点睛】
本题考查有代数式表示实际问题,掌握用代数式表示长方形的边长,读懂题意列出代数式是解决此题关键.
3、(1)见解析;(2)60°;(3)70或290
【分析】
(1)由可得,,,则;
(2)利用(1)中的结论可知,,则可得的度数为,由对顶角相等可得;
(3)结合(1)中的结论可得,注意需要讨论是钝角或是锐角时两种情况.
【详解】
解:(1)如图1,,
,,
,
.
(2)由(1)中探究可知,,
,且,
,
;
(3)如图,当为钝角时,
由(1)中结论可知,,
;
当为锐角时,如图,
由(1)中结论可知,,
即,
综上,或.
故答案为:70或290.
【点睛】
本题主要考查平行线的性质与判定,难度适中,观察图形,推出角之间的和差关系是解题关键.
4、
(1)真;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)1::2
【分析】
(1)根据等边三角形的性质“三边都相等”,结合“和谐三角形”的定义即可判断;
(2)由勾股定理可知,根据是“和谐三角形”,可分类讨论:①当时;②当时;③当时,再结合,计算出符合题意的比即可.
(1)
根据等边三角形的性质可知:,
∴.
故等边是“和谐三角形”.
所以等边三角形一定是“和谐三角形”,是真命题.
故答案为:真.
(2)
∵是直角三角形,且,
∴,
由是“和谐三角形”,可分类讨论,
①当时.
故有,整理得:,
∴,整理得:.
∴.
此时,不符合题意(舍).
②当时.
故有,整理得:,
故此情况不存在(舍).
③当时.
故有,整理得:,
∴,整理得:.
∴.
【点睛】
本题考查判断命题的真假,等边三角形的性质和勾股定理.读懂题意,理解“和谐三角形”的定义是解答本题的关键.
5、
(1)即抛物线的解析式为:;
(2)若将抛物线向下平移t个单位长度,使平移后所得的抛物线的顶点落在内部(包含边界),则;
(3)能成为以点P为直角顶点的等腰直角三角形,点P的坐标为或(3,4)或或(,).
【分析】
(1)将点B及对称轴代入,解方程组即可确定抛物线解析式;
(2)先求直线BC的解析式,再求出抛物线顶点坐标,求出BC上与顶点横坐标相同的点的坐标,即可求出平移的范围;
(3)分两种情况进行讨论:①当P在x轴上方时;②当P点在x轴下方时;过点P作于G,轴于H,根据全等三角形的判定定理和性质得出,设点,则可以用m表示,求出m即可确定点P的坐标.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)
解:将点B及对称轴代入可得:
,
解得:,
即抛物线的解析式为:;
(2)
解:在中,当时,,即,
由,,设直线BC的解析式为,代入可得:
,
解得:,
直线BC的解析式为:,
中,当时,,
∴顶点坐标为:,
当时,,
∴,
∴若将抛物线向下平移t个单位长度,使平移后所得的抛物线的顶点落在内部(包含边界),则;
(3)
(3)令直线为直线l,
①当P在x轴上方时,
过点P作于G,轴于H, 为等腰直角三角形,
∴ , ,
∴,
在与中,
,
∴
∴,
设点,
则,,
∴,
解得:或,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
即或(3,4);
②当P点在x轴下方时,如图所示:过点P作于G,轴于H, 为等腰直角三角形,
∴ , ,
∴,
在与中,
,
∴
∴,
设点,
则,,
∴,
解得:或,
当时,;
当时,;
即,或(,);
综上所述,能成为以点P为直角顶点的等腰直角三角形,点P的坐标为:或(3,4)或或(,).
【点睛】
本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,二次函数动点问题中等腰直角三角形的存在性问题;此题通过作两条互相垂直的辅助线,把等腰直角三角形的问题转化为全等三角形的问题,继而转化为线段相等的问题,是解题的关键.
x
-1
0
1
2
3
-8
-4
0
4
8
真题解析湖南省怀化市中考数学模拟真题练习 卷(Ⅱ)(含答案解析): 这是一份真题解析湖南省怀化市中考数学模拟真题练习 卷(Ⅱ)(含答案解析),共26页。试卷主要包含了下列语句中,不正确的是,不等式的最小整数解是,单项式的次数是等内容,欢迎下载使用。
真题解析湖南省怀化市中考数学模拟真题 (B)卷(含答案详解): 这是一份真题解析湖南省怀化市中考数学模拟真题 (B)卷(含答案详解),共29页。试卷主要包含了一元二次方程的根为,一元二次方程的根为.,生活中常见的探照灯等内容,欢迎下载使用。
【真题汇编】湖南省怀化市中考数学模拟真题练习 卷(Ⅱ)(含答案详解): 这是一份【真题汇编】湖南省怀化市中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共30页。试卷主要包含了如图,E等内容,欢迎下载使用。