【真题汇编】湖南省常德市中考数学一模试题(含答案详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在平面直角坐标系xOy中,已知点A(1,0),B(3,0),C为平面内的动点,且满足∠ACB=90°,D为直线y=x上的动点,则线段CD长的最小值为( )
A.1B.2C.D.
2、下列等式变形中,不正确的是( )
A.若,则B.若,则
C.若,则D.若,则
3、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
A.B.C.D.
4、如图(1)是一个三角形,分别连接这个三角形三边中点得到图(2),再分别连接图(2)中间的小三角形三边中点得到图(3),按这种方法继续下去,第6个图形有( )个三角形.
A.20B.21C.22D.23
5、下列现象:
①用两个钉子就可以把木条固定在墙上
②从A地到B地架设电线,总是尽可能沿着线段AB架设
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线
④把弯曲的公路改直,就能缩短路程
其中能用“两点之间线段最短”来解释的现象有( )
A.①④B.①③C.②④D.③④
6、如图,有三块菜地△ACD、△ABD、△BDE分别种植三种蔬菜,点D为AE与BC的交点,AD平分∠BAC,AD=DE,AB=3AC,菜地△BDE的面积为96,则菜地△ACD的面积是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.24B.27C.32D.36
7、如图是由4个相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )
A.B.C.D.
8、如图是一个运算程序,若x的值为,则运算结果为( )
A.B.C.2D.4
9、有理数a,b在数轴上对应的位置如图所示,则下列结论正确的是( ).
A.B.C.D.
10、已知直线与双曲线相交于,两点,若点的坐标为,则点的坐标为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在中,,,BE是高,且点D,F分别是边AB,BC的中点,则的周长等于______.
2、如图,射线,相交于点,则的内错角是__.
3、与是同类项.则常数n的值为________.
4、、所表示的有理数如图所示,则________.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、若,则的值是______.
三、解答题(5小题,每小题10分,共计50分)
1、如图1,在平面直角坐标系中,已知、、、,以为边在下方作正方形.
(1)求直线的解析式;
(2)点为正方形边上一点,若,求的坐标;
(3)点为正方形边上一点,为轴上一点,若点绕点按顺时针方向旋转后落在线段上,请直接写出的取值范围.
2、计算:
(1);
(2).
3、如图,在直角坐标系内,把y=x的图象向下平移1个单位得到直线AB,直线AB分别交x轴于点A,交y轴于点B,C为线段AB的中点,过点C作AB的垂线,交y轴于点D.
(1)求A,B两点的坐标;
(2)求BD的长;
(3)直接写出所有满足条件的点E;点E在坐标轴上且△ABE为等腰三角形.
4、解方程:
(1);
(2)
5、解方程:.
-参考答案-
一、单选题
1、C
【分析】
取AB的中点E,过点E作直线y=x的垂线,垂足为D,求出DE长即可求出答案.
【详解】
解:取AB的中点E,过点E作直线y=x的垂线,垂足为D,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵点A(1,0),B (3,0),
∴OA=1,OB=3,
∴OE=2,
∴ED=2×=,
∵∠ACB=90°,
∴点C在以AB为直径的圆上,
∴线段CD长的最小值为−1.
故选:C.
【点睛】
本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.
2、D
【分析】
根据等式的性质即可求出答案.
【详解】
解:A.a=b的两边都加5,可得a+5=b+5,原变形正确,故此选项不符合题意;
B.a=b的两边都除以3,可得,原变形正确,故此选项不符合题意;
C.的两边都乘6,可得,原变形正确,故此选项不符合题意;
D.由|a|=|b|,可得a=b或a=−b,原变形错误,故此选项符合题意.
故选:D.
【点睛】
本题考查等式的性质,解题的关键是熟练运用等式的性质.等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.
3、B
【分析】
如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
【详解】
解:如图:连接OB,
∵是的切线,B为切点
∴∠OBA=90°
∵
∴∠COB=90°-42°=48°
∴=∠COB=24°.
故选B.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
4、B
【分析】
由第一个图中1个三角形,第二个图中5个三角形,第三个图中9个三角形,每次递增4个,即可得出第n个图形中有(4n-3)个三角形.
【详解】
解:由图知,第一个图中1个三角形,即(4×1-3)个;
第二个图中5个三角形,即(4×2-3)个;
第三个图中9个三角形,即(4×3-3)个;
…
∴第n个图形中有(4n-3)个三角形.
∴第6个图形中有个三角形
故选B
【点睛】
本题考查了图形变化的一般规律问题.能够通过观察,掌握其内在规律是解题的关键.
5、C
【分析】
直接利用直线的性质和线段的性质分别判断得出答案.
【详解】
解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;
②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;
④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.
故选:C.
【点睛】
本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.
6、C
【分析】
利用三角形的中线平分三角形的面积求得S△ABD=S△BDE=96,利用角平分线的性质得到△ACD与△ABD的高相等,进一步求解即可.
【详解】
解:∵AD=DE,S△BDE=96,
∴S△ABD=S△BDE=96,
过点D作DG⊥AC于点G,过点D作DF⊥AB于点F,
∵AD平分∠BAC,
∴DG=DF,
∴△ACD与△ABD的高相等,
又∵AB=3AC,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴S△ACD=S△ABD=.
故选:C.
【点睛】
本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.
7、A
【分析】
根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,对每个选项分别判断、解答.
【详解】
解:B是俯视图,C是左视图,D是主视图,
故四个平面图形中A不是这个几何体的三视图.
故选:A.
【点睛】
本题考查了简单组合体的三视图,掌握几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形是解题的关键.
8、A
【分析】
根据运算程序,根据绝对值的性质计算即可得答案.
【详解】
∵<3,
∴=,
故选:A.
【点睛】
本题考查绝对值的性质及有理数的加减运算,熟练掌握绝对值的性质及运算法则是解题关键.
9、D
【分析】
先根据数轴可得,再根据有理数的减法法则、绝对值性质逐项判断即可得.
【详解】
解:由数轴的性质得:.
A、,则此项错误;
B、,则此项错误;
C、,则此项错误;
D、,则此项正确;
故选:D.
【点睛】
本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键.
10、A
【分析】
首先把点A坐标代入,求出k的值,再联立方程组求解即可
【详解】
解:把A代入,得:
∴k=4
∴
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
联立方程组
解得,
∴点B坐标为(-2,-2)
故选:A
【点睛】
本题考查了反比例函数与一次函数的交点问题,解题的关键是正确掌握代入法.
二、填空题
1、20
【解析】
【分析】
由题意易AF⊥BC,则有,然后根据直角三角形斜边中线定理可得,进而问题可求解.
【详解】
解:∵,F是边BC的中点,
∴AF⊥BC,
∵BE是高,
∴,
∵点D,F分别是边AB,BC的中点,,,
∴,
∴;
故答案为20.
【点睛】
本题主要考查等腰三角形的性质及直角三角形斜边中线定理,熟练掌握等腰三角形的性质及直角三角形斜边中线定理是解题的关键.
2、##∠BAE
【解析】
【分析】
根据内错角的意义,结合具体的图形进行判断即可.
【详解】
解:由内错角的意义可得,与是内错角,
故答案为:.
【点睛】
本题考查内错角,掌握内错角的意义是正确解答的前提.
3、
【解析】
【分析】
所含字母相同,相同字母的指数也相同的单项式是同类项,根据同类项的概念可得答案.
【详解】
解: 与是同类项,
故答案为:
【点睛】
本题考查的是同类项的概念,掌握“利用同类项的概念求解字母指数的值”是解本题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、
【解析】
【分析】
根据数轴确定,得出,然后化去绝对值符号,去括号合并同类项即可.
【详解】
解:根据数轴得,
∴,
∴.
故答案为:.
【点睛】
本题考查数轴上点表示数,化简绝对值,整式加减运算,掌握数轴上点表示数,化简绝对值,整式加减运算,关键是利用数轴得出.
5、-2
【解析】
【分析】
将的值代入原式=计算可得.
【详解】
解:=
将代入,原式==-2
故答案为:-2
【点睛】
本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.
三、解答题
1、
(1)
(2),,,
(3)或
【分析】
(1)待定系数法求直线解析式,代入坐标、得出,解方程组即可;
(1)根据OA=2,OB=4,设点P在y轴上,点P坐标为(0,m),根据S△ABP=8,求出点P(0,4)或(0,-12),过P(0,4)作AB的平行线交正方形CDEF边两点N1和N2,利用平行线性质求出与AB平行过点P的解析式,与CD,FE的交点,过点P(0,-12)作AB的平行线交正方形CDEF边两点N3和N4,利用平行线性质求出与AB平行过点P的解析式,求出与DE,EF的交点即可;
(3):根据点N在正方形边上,分四种情况①在上,过N′作GN′⊥y轴于G,正方形边CD与y轴交于H,在y轴正半轴上,先证△HNM1≌△GM1N′(AAS),求出点N′(6-m,m-6)在线段AB上,代入解析式直线的解析式得出,当点N旋转与点B重合,可得M2N′=NM2-OB=6-4=2②在上,当点N绕点M3旋转与点A重合,先证△HNM3≌△GM3N′(AAS),DH=M3G=6-2=4,HM3=GN′=2,③在上,当点N与点F重合绕点M4旋转到AB上N′先证△M5NM3≌△GM3N′(AAS),得出点N′(-6-m,m+6),点N′在线段AB上,直线的解析式,得出方程,,当点N绕点M5旋转点N′与点A重合,证明△FM3N≌△OM5N′(AAS),可得FM5=M5O=6,FN=ON′=2,④在上,点N绕点M6旋转点N′与点B重合,MN=MB=2即可.
(1)
解:设,代入坐标、得:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
∴直线的解析式;
(2)
解:∵、、OA=2,OB=4,设点P在y轴上,点P坐标为(0,m)
∵S△ABP=8,
∴,
∴,
解得,
∴点P(0,4)或(0,-12),
过P(0,4)作AB的平行线交正方形CDEF边两点N1和N2,
设解析式为,m=2,n=4,
∴,
当y=6时,,
解得,
当y=-6时,,
解得,
,,
过点P(0,-12)作AB的平行线交正方形CDEF边两点N3和N4,
设解析式为,
,
当y=-6, ,
解得:,
当x=6, ,
解得,
,
∴,的坐标为或或或,
(3)
解:①在上,过N′作GN′⊥y轴于G,正方形边CD与y轴交于H,在y轴正半轴上,
∵M1N=M1N′,∠NM1N′=90°,
∴∠HNM1+∠HM1N=90°,∠HM1N+∠GM1N′=90°,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠HNM1=∠GM1N′,
在△HNM1和△GM1N′中,
,
∴△HNM1≌△GM1N′(AAS),
∴DH=M1G=6,HM1=GN′=6-m,
∵点N′(6-m,m-6)在线段AB上,直线的解析式;
即,
解得,
当点N旋转与点B重合,
∴M2N′=NM2-OB=6-4=2,
,,
,
②在上,
当点N绕点M3旋转与点A重合,
∵M3N=M3N′,∠NM3N′=90°,
∴∠HNM3+∠HM3N=90°,∠HM3N+∠GM3N′=90°,
∴∠HNM3=∠GM3N′,
在△HNM3和△GM3N′中,
,
∴△HNM3≌△GM3N′(AAS),
∴DH=M3G=6-2=4,HM3=GN′=2,
,,
③在上,
当点N与点F重合绕点M4旋转到AB上N′,
∵M4N=M4N′,∠NM4N′=90°,
∴∠M5NM4+∠M5M4N=90°,∠M5M4N+∠GM4N′=90°,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠M5NM4=∠GM4N′,
在△M5NM4和△GM4N′中,
,
∴△M5NM3≌△GM3N′(AAS),
∴FM5=M4G=6,M5M4=GN′=-6-m,
∴点N′(-6-m,m+6),
点N′在线段AB上,直线的解析式;
,
解得,
当点N绕点M5旋转点N′与点A重合,
∵M5N=M5N′,∠NM5N′=90°,
∴∠NM5O+∠FM5N=90°,∠OM5N+∠OM5N′=90°,
∴∠FM5N=∠OM5N′,
在△FM5N和△OM5N′中,
,
∴△FM3N≌△OM5N′(AAS),
∴FM5=M5O=6,FN=ON′=2,
,,,
④在上,
点N绕点M6旋转点N′与点B重合,MN=MB=2,
,,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
综上:或
【点睛】
本题考查图形与坐标,待定系数法求一次函数解析式,正方形的性质,平行线性质,图形旋转,三角形全等判定与性质,一元一次方程,不等式,本题难度,图形复杂,应用知识多,要求有很强的解题能力.
2、
(1)
(2)-3
【分析】
(1)直接利用乘法分配律计算得出答案;
(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.
(1)
原式==-12-+14=;
(2)
原式=-4-3÷(-3)=-4+1=-3.
【点睛】
本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
3、
(1),
(2)
(3),,,,,,,
【分析】
(1)先根据一次函数图象的平移可得直线的函数解析式,再分别求出时的值、时的值即可得;
(2)设点的坐标为,从而可得,再根据线段垂直平分线的判定与性质可得,建立方程求出的值,由此即可得;
(3)分①点在轴上,②点在轴上两种情况,分别根据建立方程,解方程即可得.
(1)
解:由题意得:直线的函数解析式为,
当时,,解得,即,
当时,,即;
(2)
解:设点的坐标为,
,,
点为线段的中点,,
垂直平分,
,即,
解得,
则;
(3)
解:由题意,分以下两种情况:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
①当点在轴上时,设点的坐标为,
则,
,
,
(Ⅰ)当时,为等腰三角形,
则,解得或,
此时点的坐标为或;
(Ⅱ)当时,为等腰三角形,
则,解得或,
此时点的坐标为或(与点重合,舍去);
(Ⅲ)当时,为等腰三角形,
则,解得,
此时点的坐标为;
②当点在轴上时,设点的坐标为,
则,
,
,
(Ⅰ)当时,为等腰三角形,
则,解得或,
此时点的坐标为或(与点重合,舍去);
(Ⅱ)当时,为等腰三角形,
则,解得或,
此时点的坐标为或;
(Ⅲ)当时,为等腰三角形,
则,解得,
此时点的坐标为;
综上,所有满足条件的点的坐标为,,,,,,,.
【点睛】
本题考查了一次函数图象的平移、线段垂直平分线的判定与性质、等腰三角形、两点之间的距离公式等知识点,较难的是题(3),正确分情况讨论是解题关键.
4、
(1)x= ;
(2)x=
【分析】
(1)根据解一元一次方程的方法求解即可;
(2)根据解一元一次方程的方法求解即可.
(1)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:去括号,得:6-9x=x+1,
移项、合并同类项,得:-10x=-5,
化系数为1,得:x= ;
(2)
解:去分母,得:2(2x+1)=6+(1-3x),
去括号,得:4x+2=6+1-3x,
移项、合并同类项,得:7x=5,
化系数为1,得:x= ;
【点睛】
本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.
5、
【分析】
去分母,移项合并同类项,系数化为1即可求解.
【详解】
.
去分母得:.
去括号得:
移项合并同类项得:.
系数化为1得:.
【点睛】
本题考查一元一次方程的解法,先去分母、移项合并、化系数为1.属于基础题.
【真题汇编】湖南省中考数学一模试题(含答案详解): 这是一份【真题汇编】湖南省中考数学一模试题(含答案详解),共28页。试卷主要包含了下列计算中,正确的是,如图,下列条件中不能判定的是等内容,欢迎下载使用。
【真题汇编】湖南省中考数学历年真题汇总 (A)卷(含答案详解): 这是一份【真题汇编】湖南省中考数学历年真题汇总 (A)卷(含答案详解),共27页。试卷主要包含了下列语句中,不正确的是,如图,A,有理数 m等内容,欢迎下载使用。
【真题汇编】湖南省益阳市中考数学一模试题(含答案及解析): 这是一份【真题汇编】湖南省益阳市中考数学一模试题(含答案及解析),共24页。试卷主要包含了下列图形是全等图形的是等内容,欢迎下载使用。