|试卷下载
终身会员
搜索
    上传资料 赚现金
    【高频真题解析】湖南省益阳市中考数学真题模拟测评 (A)卷(含答案详解)
    立即下载
    加入资料篮
    【高频真题解析】湖南省益阳市中考数学真题模拟测评 (A)卷(含答案详解)01
    【高频真题解析】湖南省益阳市中考数学真题模拟测评 (A)卷(含答案详解)02
    【高频真题解析】湖南省益阳市中考数学真题模拟测评 (A)卷(含答案详解)03
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【高频真题解析】湖南省益阳市中考数学真题模拟测评 (A)卷(含答案详解)

    展开
    这是一份【高频真题解析】湖南省益阳市中考数学真题模拟测评 (A)卷(含答案详解),共32页。试卷主要包含了如图,等内容,欢迎下载使用。

    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
    A.B.C.D.
    2、代数式的意义是( )
    A.a与b的平方和除c的商B.a与b的平方和除以c的商
    C.a与b的和的平方除c的商D.a与b的和的平方除以c的商
    3、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )
    A.B.C.D.
    4、如图,、是的切线,、是切点,点在上,且,则等于( )
    A.54°B.58°C.64°D.68°
    5、有理数在数轴上对应点的位置如图所示,下列结论中正确是( )
    A.B.C.D.
    6、在如图所示的几何体中,从不同方向看得到的平面图形中有长方形的是( )
    A.①B.②C.①②D.①②③
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    7、下面的图形中,是轴对称图形但不是中心对称图形的是( )
    A.B.C.D.
    8、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )
    A.16B.19C.24D.36
    9、已知直线与双曲线相交于,两点,若点的坐标为,则点的坐标为( )
    A.B.C.D.
    10、一枚质地均匀的骰子六个面上分别刻有1到6的点数,掷一次骰子,下列事件中是随机事件的是( )
    A.向上的点数大于0B.向上的点数是7
    C.向上的点数是4D.向上的点数小于7
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在矩形ABCD中,cm,cm.动点P、Q分别从点A、C以1cm/s的速度同时出发.动点P沿AB向终点B运动,动点Q沿CD向终点D运动,连结PQ交对角线AC于点O.设点P的运动时间为.
    (1)当四边形APQD是矩形时,t的值为______.
    (2)当四边形APCQ是菱形时,t的值为______.
    (3)当是等腰三角形时,t的值为______.
    2、如图,在平面直角坐标系xOy中,P为函数图象上一点,过点P分别作x轴、y轴的垂线,垂足分别为M,N.若矩形PMON的面积为3,则m的值为______.
    3、如图,AC为正方形ABCD的对角线,E为AC上一点,连接EB,ED,当时,的度数为______.
    4、计算:2a2﹣(a2+2)=_______.
    5、如图,,D为外一点,且交的延长线于E点,若,则_______.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    三、解答题(5小题,每小题10分,共计50分)
    1、计算:.
    2、在平面直角坐标系xOy中,已知点A(1,0)和点B(5,0).对于线段AB和直线AB外的一点C,给出如下定义:点C到线段AB两个端点的连线所构成的夹角∠ACB叫做线段AB关于点C的可视角,其中点C叫做线段AB的可视点.
    (1)在点D(-2,2)、E(1,4)、F(3,-2)中,使得线段AB的可视角为45°的可视点是 ;
    (2)⊙P为经过A,B两点的圆,点M是⊙P上线段AB的一个可视点.
    ① 当AB为⊙P的直径时,线段AB的可视角∠AMB为 度;
    ② 当⊙P的半径为4时,线段AB的可视角∠AMB为 度;
    (3)已知点N为y轴上的一个动点,当线段AB的可视角∠ANB最大时,求点N的坐标.
    3、如图,点A在的一边OA上.按要求画图并填空.
    (1)过点A画直线,与的另一边相交于点B;
    (2)过点A画OB的垂线AC,垂足为点C;
    (3)过点C画直线,交直线AB于点D;
    (4)直接写出______°;
    (5)如果,,,那么点A到直线OB的距离为______.
    4、已知:在平面直角坐标系中,点O为坐标原点,和关于y轴对称,且,
    (1)如图1,求的度数;
    (2)如图2,点P为线段延长线上一点,交x轴于点D,设,点P的横坐标为d,求d与t之间的数量关系;
    (3)如图3,在(2)的条件下,点E为x轴上一点,连接交y轴于点F,且,,在的延长线上取一点Q,使,求点Q的横坐标.
    5、已知:在四边形中,于E,且.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)如图1,求的度数;
    (2)如图2,平分交于F,点G在上,连接,且.求证:;
    (3)如图3,在(2)的条件下,,过点F作,且,若,求线段的长.
    -参考答案-
    一、单选题
    1、B
    【分析】
    如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
    【详解】
    解:如图:连接OB,
    ∵是的切线,B为切点
    ∴∠OBA=90°

    ∴∠COB=90°-42°=48°
    ∴=∠COB=24°.
    故选B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
    2、D
    【分析】
    (a+b)2表示a与b的和的平方,然后再表示除以c的商.
    【详解】
    解:代数式的意义是a与b的和的平方除以c的商,
    故选:D.
    【点睛】
    此题主要考查了代数式的意义,关键是根据计算顺序描述.
    3、B
    【分析】
    根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.
    【详解】
    解:∵ADBC,
    ∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴,故A正确,不符合题意;
    ∵ADBC,
    ∴△DOE∽△BOF,
    ∴,
    ∴,
    ∴,故B错误,符合题意;
    ∵ADBC,
    ∴△AOD∽△COB,
    ∴,
    ∴,故C正确,不符合题意;
    ∴ ,
    ∴,故D正确,不符合题意;
    故选:B
    【点睛】
    本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
    4、C
    【分析】
    连接,,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.
    【详解】
    解:连接,,如下图:

    ∵PA、PB是的切线,A、B是切点

    ∴由四边形的内角和可得:
    故选C.
    【点睛】
    此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.
    5、C
    【分析】
    利用数轴,得到,,然后对每个选项进行判断,即可得到答案.
    【详解】
    解:根据数轴可知,,,
    ∴,故A错误;
    ,故B错误;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ,故C正确;
    ,故D错误;
    故选:C
    【点睛】
    本题考查了数轴,解题的关键是由数轴得出,,本题属于基础题型.
    6、C
    【分析】
    分别找出每个图形从三个方向看所得到的图形即可得到答案.
    【详解】
    ①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,符合要求;
    ②圆柱从左面和正面看都是长方形,从上边看是圆,符合要求;
    ③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,不符合要求;故选:C.
    【点睛】
    本题考查了从不同方向看几何体,掌握定义是关键.注意正方形是特殊的长方形.
    7、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;
    B、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    C、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    D、是轴对称图形,不是中心对称图形,故此选项符合题意;
    故选:D.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    8、C
    【分析】
    分别求出各视图的面积,故可求出表面积.
    【详解】
    由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5
    故表面积为2×(4+3+5)=24
    故选C.
    【点睛】
    此题主要考查三视图的求解与表面积。解题的关键是熟知三视图的性质特点.
    9、A
    【分析】
    首先把点A坐标代入,求出k的值,再联立方程组求解即可
    【详解】
    解:把A代入,得:
    ∴k=4

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    联立方程组
    解得,
    ∴点B坐标为(-2,-2)
    故选:A
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,解题的关键是正确掌握代入法.
    10、C
    【分析】
    根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.
    【详解】
    解:A. 向上的点数大于0,是必然事件,故此选项不符合题意;
    B. 向上的点数是7,是不可能事件,故此选项不符合题意;
    C. 向上的点数是4,是随机事件,故此选项符合题意;
    D. 向上的点数小于7,是必然事件,故此选项不符合题意
    故选C
    【点睛】
    本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    二、填空题
    1、 4 或5或4
    【解析】
    【分析】
    (1)根据矩形的性质得到CD=cm,,求出DQ=(8-t)cm,由四边形APQD是矩形时,得到t=8-t,求出t值;
    (2)连接PC,求出AP=PC=tcm,PB=(8-t)cm,由勾股定理得,即,求解即可;
    (3)由勾股定理求出AC=10cm,证明△OAP≌△OCQ,得到OA=OC=5cm,分三种情况:当AP=OP时,过点P作PN⊥AO于N,证明△NAP∽△BAC,得到,求出t=;当AP=AO=5cm时,t=5;当OP=AO=5cm时,过点O作OG⊥AB于G,证明△OAG∽△CAB,得到,代入数值求出t.
    【详解】
    解:(1)由题意得AP=CQ=t,
    ∵在矩形ABCD中,cm,cm.
    ∴CD=cm,,
    ∴DQ=(8-t)cm,
    当四边形APQD是矩形时,AP=DQ,
    ∴t=8-t,
    解得t=4,
    故答案为:4;
    (2)连接PC,
    ∵四边形APCQ是菱形,
    ∴AP=PC=tcm,PB=(8-t)cm,
    ∵在矩形ABCD中,∠B=90°,
    ∴,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴,
    解得,
    故答案为:;
    (3)∵∠B=90°,cm,cm.
    ∴AC=10cm,
    ∵,
    ∴∠OAP=∠OCQ,∠OPA=∠OQC,
    ∴△OAP≌△OCQ,
    ∴OA=OC=5cm,
    分三种情况:
    当AP=OP时,过点P作PN⊥AO于N,则AN=ON=2.5cm,
    ∵∠NAP=∠BAC,∠ANP=∠B,
    ∴△NAP∽△BAC,
    ∴,
    ∴,
    解得t=;
    当AP=AO=5cm时,t=5;
    当OP=AO=5cm时,过点O作OG⊥AB于G,则,
    ∵∠OAG=∠BAC,∠OGA=∠B,
    ∴△OAG∽△CAB,
    ∴,
    ∴,
    解得t=4,
    故答案为:或5或4.
    【点睛】
    此题考查了矩形的性质,菱形的性质,等腰三角形的性质,勾股定理,相似三角形的判定及性质,熟记各知识点并应用解决问题是解题的关键.
    2、3
    【解析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    根据反比例函数的解析式是,设点,根据已知得出,即,求出即可.
    【详解】
    解:设反比例函数的解析式是,
    设点是反比例函数图象上一点,
    矩形的面积为3,

    即,
    故答案为:3.
    【点睛】
    本题考查了矩形的面积和反比例函数的有关内容的应用,解题的关键是主要考查学生的理解能力和运用知识点解题的能力.
    3、18°##18度
    【解析】
    【分析】
    由“SAS”可证△DCE≌△BCE,可得∠CED=∠CEB=∠BED=63°,由三角形的外角的性质可求解.
    【详解】
    证明:∵四边形ABCD是正方形,
    ∴AD=CD=BC=AB,∠DAE=∠BAE=∠DCA=∠BCA=45°,
    在△DCE和△BCE中,

    ∴△DCE≌△BCE(SAS),
    ∴∠CED=∠CEB=∠BED=63°,
    ∵∠CED=∠CAD+∠ADE,
    ∴∠ADE=63°-45°=18°,
    故答案为:18°.
    【点睛】
    本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE≌△BCE是本题的关键.
    4、##-2+a2
    【解析】
    【分析】
    根据整式的加减运算法则即可求出答案.
    【详解】
    解:原式=2a2-a2-2
    =.
    【点睛】
    本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,特别注意括号前面是负号去掉括号和负号括号里面各项都要变号.本题属于基础题型.
    5、2
    【解析】
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    过点D作DM⊥CB于M,证出∠DAE=∠DBM,判定△ADE≌△BDM,得到DM=DE=3,证明四边形CEDM是矩形,得到CE=DM=3,由AE=1,求出BC=AC=2.
    【详解】
    解:∵DE⊥AC,
    ∴∠E=∠C=90°,
    ∴,
    过点D作DM⊥CB于M,则∠M=90°=∠E,
    ∵AD=BD,
    ∴∠BAD=∠ABD,
    ∵AC=BC,
    ∴∠CAB=∠CBA,
    ∴∠DAE=∠DBM,
    ∴△ADE≌△BDM,
    ∴DM=DE=3,
    ∵∠E=∠C=∠M =90°,
    ∴四边形CEDM是矩形,
    ∴CE=DM=3,
    ∵AE=1,
    ∴BC=AC=2,
    故答案为:2.
    【点睛】
    此题考查了全等三角形的判定及性质,矩形的判定及性质,等边对等角证明角度相等,正确引出辅助线证明△ADE≌△BDM是解题的关键.
    三、解答题
    1、-12
    【分析】
    观察此题,先计算乘除,再计算加减即可.
    【详解】
    原式,


    【点睛】
    本题考查有理数的混合运算,先乘除后加减是解题关键.
    2、
    (1)点E
    (2)① 90;② 30或150
    (3)N(0,)或(0,- )
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)AE、BE、AB满足勾股定理,且AE=AB,可知为等腰直角三角形,则∠AEB=45°,故E点可使线段AB的可视角为45°.
    (2)①由半径所对的圆周角为90°即可得出∠AMB为90°.
    ②连接AP、BP,即可得出为等边三角形,由圆周角定理即可求得∠AMB为30°或150°.
    (3)以AB为弦作圆M且过点N,由圆周角定理可得出当圆心角AMB最大时,圆周角ANB最大,由直线与圆的位置关系得出当y轴与圆M相切时圆心角AMB最大,进而可求得N点坐标.
    (1)
    连接AE,BE
    ∵AE=4,AB=4,AE⊥AB
    ∴为等腰直角三角形
    ∴∠AEB=45°.
    故使得线段AB的可视角为45°的可视点是点E.
    (2)
    ①有题意可知,此时AB为⊙P直径
    由半径所对的圆周角为90°可知∠AMB为90°
    ②当⊙P的半径为4时,AB为⊙P一条弦,连接AP,BP
    ∵BP=AP=4,AB=4
    ∴为等边三角形
    ∴∠APB=60°
    当点M在圆心一侧由圆周角定理知∠AMB=
    当点M不在圆心一侧由内切四边形性质可知∠AMB=180°-30°=150°
    (3)
    (3)解: ∵过不在同一条直线上的三点确定一个圆,
    ∴A、B、N三点共圆,且过A、B两点的圆有无数个,圆心在直线x=3上.
    即:点N的位置为过A、B两点的圆与y轴的交点.
    设过A、B两点的圆为⊙M,半径为r.
    当r<3时,y轴与⊙M无交点,不符题意舍去.
    如图所示:
    当r=3时,y轴与⊙M交于一点,此时y轴与⊙M相切,切点即为点N.
    当r>3时,y轴与⊙M1交于两点,此时y轴与⊙M1相交,交点设为N1、N2.
    连接AM、BM、AN、BN、AM1、BM1、AN1、BN1.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    此时,∠ANB、∠AMB分别为⊙M中弧AB所对的圆周角和圆心角;
    ∠AN1B、∠AM1B分别为⊙M1中弧AB所对的圆周角和圆心角.
    ∵∠1=∠M1AM+∠AM1M,
    ∠2=∠M1BM+∠BM1M,
    ∴∠1+∠2=∠M1AM+∠AM1M+∠BM1M+∠M1BM,
    即∠AMB=∠M1AM+∠AM1B+∠M1BM
    ∴∠AMB>∠AM1B
    ∴∠ANB>∠AN1B
    ∵∠AN1B=∠AN2B
    ∴∠ANB>∠AN2B
    ∴当y轴与⊙M相切于点N时,∠ANB的值最大.
    在Rt△AMC中,AM=r=3,AC=2
    ∴MC=
    ∵MN⊥y轴,MC⊥AB,
    ∴四边形OCMN为矩形.
    ∴ON=MC=
    ∴N(0,)
    同理,当点N在y轴负半轴时,坐标为(0,- )
    综述所述,N(0,)或(0,-).
    【点睛】
    本题考查了圆周角定理,将可视角的定义转化为圆内弦AB的圆周角是解题的关键,再结合图象计算即可.
    3、(1)图见解析;(2)图见解析;(3)图见解析;(4)90;(5).
    【分析】
    (1)根据垂线的画法即可得;
    (2)根据垂线的画法即可得;
    (3)根据平行线的画法即可得;
    (4)根据平行线的性质可得;
    (5)利用三角形的面积公式即可得.
    【详解】
    解:(1)如图,直线即为所求;
    (2)如图,垂线即为所求;
    (3)如图,直线即为所求;
    (4),
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·



    故答案为:90;
    (5),
    ,即,
    解得,
    即点到直线的距离为,
    故答案为:.
    【点睛】
    本题考查了画垂线和平行线、平行线的性质、点到直线的距离等知识点,熟练掌握平行线的画法和性质是解题关键.
    4、
    (1)22.5°;
    (2)d=2t;
    (3)5
    【分析】
    (1)由轴对称,得到∠ABC=2,利用,得到∠A=3,根据∠A+=90°,求出的度数;
    (2)由轴对称关系求出AD=6t,根据,推出∠ADP=∠BAO,证得AP=DP,过点P作PH⊥AD于H,求出OH=AH-AO=2t,可得d与t之间的数量关系;
    (3)连接DQ,过P作PM⊥y轴于M,求出∠EAP=∠DPQ=,证明△EAP≌△QPD,推出∠PDQ=∠APE=,得到∠ODQ=90°,证明∠MPF=∠MFP=45°,结合,求出BF=,由,求出t=1,得到OA=1,OD=5,由此求出点Q的横坐标.
    (1)
    解:∵和关于y轴对称,
    ∴∠ABO=∠CBO,
    ∴∠ABC=2,
    ∵,
    ∴∠A=3,
    ∵∠A+=90°,
    ∴=22.5°;
    (2)
    解:∵和关于y轴对称,
    ∴∠BAO=∠BCO,
    ∵,
    ∴OD=5t,AD=6t,
    ∵,
    ∴∠ADP=∠BCO,
    ∴∠ADP=∠BAO,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴AP=DP,
    过点P作PH⊥AD于H,则AH=DH=3t,
    ∴OH=AH-AO=2t,
    ∴d=2t;
    (3)
    解:∵=22.5°,∠ABC=2=45°,AB=BC,
    ∴∠BAC=∠ACB=∠ADP=,∠APD=45°,
    ∵,
    ∴∠APE=,∠AEP=45°,
    ∴∠EAP=∠DPQ=,
    ∵AP=DP,AE=PQ,
    ∴△EAP≌△QPD,
    ∴∠PDQ=∠APE=,
    ∴∠ODQ=90°,
    连接DQ,过P作PM⊥y轴于M,
    ∵∠AEP=45°,
    ∴∠MPF=∠MFP=45°,
    ∴MF=MP,
    ∵,MP=2t,
    ∴,
    ∵∠APE=,∠PBF=∠ABO=,
    ∴∠PBF=∠APE,
    ∴BF=,
    ∵,
    ∴,
    得t=1,
    ∴OA=1,OD=5,
    ∴点Q的横坐标为5.
    【点睛】
    此题考查了三角形内角和定理的应用,轴对称的性质,等腰三角形的性质,平行线的性质,全等三角形的判定及性质,勾股定理,求点坐标,综合掌握各知识点并熟练应用解决问题是解题的关键.
    5、
    (1)120°;
    (2)见解析;
    (3)3.
    【分析】
    (1)取AD的中点F,连接EF,证明△AEF是等边三角形,进而求得∠B;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)作FM⊥BC于M,FN⊥AB于点N,先证明Rt△BFM≌Rt△BFN,再证明Rt△FMG≌Rt△FNA;
    (3)连接AG,DF,DG,作FM⊥BC于M,先证明AF=GF=DF,从而得出∠AGH=∠AFD=30°,进而得出∠DGC=∠DFC=120°,从而得出点G、C、D、F共圆,进而得出CA平分∠BCD,接着可证Rt△FMG≌Rt△FHD,△MCF≌△HCF,进而求得GM=CG=DH=,从而得出BM的值,进而求得BF.
    (1)
    解:如图1,取AD的中点F,连接EF,
    ∵DE⊥AC,
    ∴∠AED=90°,
    ∴AD=2AF=2EF,
    ∵AD=2AE,
    ∴AE=EF=AF,
    ∴∠CAD=60°,
    ∵∠B+∠CAD=180°,
    ∴∠B=120°;
    (2)
    证明:如图2,作FM⊥BC于M,FN⊥AB于点N,
    ∴∠BMF=∠BNF=90°,∠GMF=∠ANF=90°,
    ∵BF平分∠ABC,
    ∴FM=FN,
    在Rt△BFM和Rt△BFN中,

    ∴Rt△BFM≌Rt△BFN(HL),
    ∴BM=BN,
    在Rt△FMG和Rt△FNA中,

    ∴Rt△FMG≌Rt△FNA(HL),
    ∴MG=NA,
    ∴BN+NA=BM+MG,
    ∴AB=BG.
    (3)
    如图3,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    连接AG,DF,DG,作FM⊥BC于M,延长GF交AD于N,
    ∵AF=AD,∠DAE=60°,
    ∴△ADF是等边三角形,
    ∴∠AFD=60°,AF=DF,
    ∵GF=AF,∠DFC=180°-∠AFD=120°,
    ∴AF=GF=DF,
    ∴∠FGD=∠FDG,∠FAG=∠FGA,
    ∴∠AGD=∠AFN+∠DFN=∠AFD=×60°=30°,
    ∵∠ADC=120°,AD=DG,
    ∴∠DGA=∠DAG==30°,
    ∴∠DGC=180°-∠DGA-∠AGD=180°-30°-30°=120°,
    ∴∠DGC=∠DFC,
    ∵∠1=∠2,
    ∴180°-∠DGC-∠1=180°-∠DFC-∠2,
    ∴∠GCF=∠FDG,∠DCF=∠FGD,
    ∴∠GCF=∠DCF,
    ∵FH⊥CD,
    ∴FM=FH,
    ∵∠FMG=∠FHD=90°,
    ∴Rt△FMG≌Rt△FHD(HL),
    ∴DH=MG,
    同理可得:△MCF≌△HCF(HL),
    ∴CM=CH=2CG,
    ∴GM=CG=DH,
    ∴3CG=CD=,
    ∴GM=CG=,
    ∴BM=BG-GM=AB-GM=5-=,
    在Rt△BFM中,∠BFM=90°-∠FBM=90°-60°=30°,
    ∴BF=2BM=3.
    【点睛】
    本题考查了等边三角形的判定和性质,全等三角形的判定和性质,角平分线的性质等知识,解决问题的关键是正确作出辅助线.
    相关试卷

    【高频真题解析】湖南省中考数学备考真题模拟测评 卷(Ⅰ)(含答案解析): 这是一份【高频真题解析】湖南省中考数学备考真题模拟测评 卷(Ⅰ)(含答案解析),共30页。试卷主要包含了如图个三角形.等内容,欢迎下载使用。

    【历年真题】湖南省益阳市中考数学三年高频真题汇总卷(含答案详解): 这是一份【历年真题】湖南省益阳市中考数学三年高频真题汇总卷(含答案详解),共24页。试卷主要包含了如图,等内容,欢迎下载使用。

    【历年真题】湖南省益阳市中考数学模拟真题测评 A卷(含答案详解): 这是一份【历年真题】湖南省益阳市中考数学模拟真题测评 A卷(含答案详解),共25页。试卷主要包含了生活中常见的探照灯等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map