【历年真题】湖南省中考数学考前摸底测评 卷(Ⅱ)(含答案解析)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
A.B.C.D.
2、在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( ).
A.28B.54C.65D.75
3、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )
A.冬B.奥C.运D.会
4、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )
A.2个B.3个C.4个D.5个
5、如图,在中,,D是BC的中点,垂足为D,交AB于点E,连接CE.若,,则BE的长为( )
A.3B.C.4D.
6、若和是同类项,且它们的和为0,则mn的值是( )
A.-4B.-2C.2D.4
7、如图是一个运算程序,若x的值为,则运算结果为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.2D.4
8、已知,则的补角等于( )
A.B.C.D.
9、如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点,若点为边的中点,点为线段上一动点,则周长的最小值为( )
A.B.C.D.
10、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).
A.7B.6C.5D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,和均为等边三角形,,分别在边,上,连接,,若,则__________.
2、2020年10月,华为推出了高端手机,它搭载的麒麟9900芯片是全球第一颗,也是唯一一颗采用5纳米工艺制造的,集成了153亿个晶体管,比苹果的芯片多了,是目前世界上晶体管最多、功能最完整的.其中“153亿”这个数据用科学记数法可以表示为__.
3、已知关于x的一元二次方程.若此方程有两个相等的实数根,则实数k的值为______;若此方程有两个实数根,则实数k的取值范围为______.
4、如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作,垂足为点F.若,,则正方形ABCD的面积为______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、已知抛物线与轴相交于,两点.若线段的长不小于2,则代数式的最小值为_______.
三、解答题(5小题,每小题10分,共计50分)
1、某校准备从八年级1班、2班的团员中选取两名同学作为运动会的志愿者,已知1班有4名团员(其中男生2人,女生2人).2班有3名团员(其中男生1人,女生2人).
(1)如果从这两个班的全体团员中随机选取一名同学作为志愿者的组长,则这名同学是男生的概率为______;
(2)如果分别从1班、2班的团员中随机各选取一人,请用画树状图或列表的方法求这两名同学恰好是一名男生、一名女生的概率.
2、如图,在等腰中,,点是边上的中点,过点作,交的延长线于点,过点作,交于点,交于点,交于点.
求证:
(1);
(2).
3、定义:若图形与图形有且只有两个公共点,则称图形与图形互为“双联图形”,即图形是图形的“双联图形”,图形是图形的“双联图形”.
(1)如图1,在平面直角坐标系中,的半径为2,下列函数图象中与互为“双联图形”的是________(只需填写序号);
①直线;②双曲线;③抛物线.
(2)若直线与抛物线互为“双联图形”,且直线不是双曲线的“双联图形”,求实数的取值范围;
(3)如图2,已知,,三点.若二次函数的图象与互为“双联图形”,直接写出的取值范围.
4、如图,已知函数y1=x+1的图像与y轴交于点A,一次函数y2=kx+b的图像经过点B(0,-1),并且与x轴以及y1=x+1的图像分别交于点C、D,点D的横坐标为1.
(1)求y2函数表达式;
(2)在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形.如果存在,求出点P坐标;如果不存在,说明理由.
(3)若一次函数y3=mx+n的图像经过点D,且将四边形AOCD的面积分成1:2.求函数y3=mx+n的表达式.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、计算:(x+2)(4x﹣1)+2x(2x﹣1).
-参考答案-
一、单选题
1、B
【分析】
根据三角形的中线的定义判断即可.
【详解】
解:∵AD、BE、CF是△ABC的三条中线,
∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
故A、C、D都不一定正确;B正确.
故选:B.
【点睛】
本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
2、B
【分析】
一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x,让选项等于3x列方程.解方程即可
【详解】
设中间的数是x,则上面的数是x-7,下面的数是x+7,
则这三个数的和是(x-7)+x+(x+7)=3x,
∴3x=28,
解得:不是整数,
故选项A不是;
∴3x=54,
解得: ,
中间的数是18,则上面的数是11,下面的数是28,
故选项B是;
∴3x=65,
解得: 不是整数,
故选项C不是;
∴3x=75,
解得:,
中间的数是25,则上面的数是18,下面的数是32,
日历中没有32,
故选项D不是;
所以这三个数的和可能为54,
故选B.
【点睛】
本题考查了一元一次方程的应用,解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.
3、D
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“京”与“奥”是相对面,
“冬”与“运”是相对面,
“北”与“会”是相对面.
故选:D.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
4、C
【分析】
设原两位数的个位为 十位为 则这个两位数为 所以交换其个位数与十位数的位置,所得新两位数为 再列方程 再求解方程的符合条件的正整数解即可.
【详解】
解:设原两位数的个位为 十位为 则这个两位数为
交换其个位数与十位数的位置,所得新两位数为 则
整理得:
为正整数,且
或或或
所以这个两位数为:
故选C
【点睛】
本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.
5、D
【分析】
勾股定理求出CE长,再根据垂直平分线的性质得出BE=CE即可.
【详解】
解:∵,,,
∴,
∵,D是BC的中点,垂足为D,
∴BE=CE,
故选:D.
【点睛】
本题考查了勾股定理,垂直平分线的性质,解题关键是熟练运用勾股定理求出CE长.
6、B
【分析】
根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
【详解】
解:∵和是同类项,且它们的和为0,
∴2+m=3,n-1=-3,
解得m=1,n=-2,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴mn=-2,
故选:B.
【点睛】
此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
7、A
【分析】
根据运算程序,根据绝对值的性质计算即可得答案.
【详解】
∵<3,
∴=,
故选:A.
【点睛】
本题考查绝对值的性质及有理数的加减运算,熟练掌握绝对值的性质及运算法则是解题关键.
8、C
【分析】
补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
【详解】
解:∵,
∴的补角等于,
故选:C.
【点睛】
本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
9、C
【分析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
【详解】
解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴,解得AD=10,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,
∴△CDM的周长最短=CM+MD+CD=AD+.
故选:C.
【点睛】
本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
10、A
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得,,设,则,由勾股定理即可求出、,由计算即可得出答案.
【详解】
由折叠的性质得,,
∴,,
∴,
∵,
∴,
∴,
在与中,
,
∴,
∴,,
设,则,
∴,
解得:,
∴,,
∴.
故选:A.
【点睛】
本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.
二、填空题
1、##45度
【解析】
【分析】
根据题意利用全等三角形的判定与性质得出和,进而依据进行计算即可.
【详解】
解:∵和均为等边三角形,
∴,
∴
在和中,
,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、
【解析】
【分析】
科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.
【详解】
153亿.
故答案为:.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.
3、 9
【解析】
【分析】
根据根的判别式的意义得Δ=62-4k=0,解方程即可;根据根的判别式的意义得Δ=62-4k≥0,然后解不等式即可.
【详解】
解:Δ=62-4k=36-4k,
∵方程有两个相等的实数根,
∴Δ=36-4k=0,
解得:k=9;
∵方程有两个实数根,
∴Δ=36-4k≥0,
解得:k≤9;
故答案为:9;k≤9.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.
4、49
【解析】
【分析】
延长FE交AB于点M,则,,由正方形的性质得,推出是等腰直角三角形,得出,由勾股定理求出CM,故得出BC,由正方形的面积公式即可得出答案.
【详解】
如图,延长FE交AB于点M,则,,
∵四边形ABCD是正方形,
∴,
∴是等腰直角三角形,
∴,
在中,,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴.
故答案为:49.
【点睛】
本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.
5、-1
【解析】
【分析】
将抛物线解析式配方,求出顶点坐标为(1,-2)在第四象限,再根据抛物线与x轴有两个交点可得,设为A,B两点的横坐标,然后根据已知,求出的取值范围,再设,配方代入求解即可.
【详解】
解:
=
=
∴抛物线顶点坐标为(1,-2),在第四象限,
又抛物线与轴相交于A,两点.
∴抛物线开口向上,即
设为A,B两点的横坐标,
∴
∵线段的长不小于2,
∴
∴
∴
∴
∴
解得,
设
当时,有最小值,最小值为:
故答案为:-1
【点睛】
本题主要考查发二次函数的图象与性质,熟记完全平方公式和根与系数的关系是解题的关键.
三、解答题
1、
(1)
(2)两名同学恰好是一名男生、一名女生的概率为:
【分析】
(1)两个班一共有7名学生,其中男生有3人,随机选一名学生选出为男生的概率为:男生人数除以总人数;
(2)先根据题意画出树状图,第一层列出从1班选出的所有可能情况,第二层列出从二班选出的所有可能情况,根据树状图可知一共有12种等可能事件,其中选出的恰好是一名男生和一名女生的情况有6种,所以两名同学恰好是一名男生、一名女生的概率为.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)
解:恰好选出的同学是男生的概,
故答案为:.
(2)
画树状图如图:
,
共有12个等可能事件,其中恰好两名同学恰好是一名男生、一名女生的概率为:,
故答案为:.
【点睛】
本题考查简单的概率计算,以及列表法或列树状图法求概率,能够将根据题意列表,或列树状图,并根据列表或树状图求出概率.
2、
(1)见解析
(2)见解析
【分析】
(1)利用已知条件证明即可;
(2)通过证明得出,再根据,得出结论.
(1)
证明:,,
,
,
,
,
,
;
(2)
证明,点是边上的中点,
,,
,
,
,
,
,
,
,
,
,
,
即.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了三角形相似的判定和性质以及直角三角形和等腰三角形的性质,解题的关键是掌握相似三角形的判定定理进行证明.
3、
(1)①
(2)的取值范围是
(3)或
【分析】
(1)根据图形M与图形N是双联图形的定义可直接判断即可;
(2)根据函数解析式联立方程,再根据“双联图形”的定义,由一元二次方程的判别式可得结论;
(3)根据双联图形的宝座进行判断即可.
(1)
选项①的直线经过第一、二、三象限,且经过点(0,1)和(-1,0)
又的半径为2,
∴这两个图形有且只有两个公共点,
∴这两个图形是“双联图形”;
选项②的双曲线在第一、三象限与图1中的图象分别有两个公共点,一共有四个公共点,不符合“双联图形”的定义,
故这两个图形不是“双联图形”;
选项③的抛物线的顶点坐标渐(-1,2),并且开口方向向上,与图1中的图象没有公共点,
故这两个图形不是“双联图形”;
∴选①
故答案为①;
(2)
已知直线与抛物线有且只有两个公共点,
∴将代入抛物线中,得,
配方得,
∵方程有实数解,
∴即
又直线不是双曲线的“双联图形”,
∴直线与双曲线最多有一个公共点,
即当时,代入得,,即,
∴实数的取值范围是;
(3)
∵是二次函数,
∴
∵二次函数的顶点坐标为(-1,3),且对称轴为直线x=-1,
∴当时,二次函数的图象与的图象没有交点,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴不成立;
当时,二次函数的图象开口向下,为使它与互为双联图形,即有且只有两个公共点,
∴①当抛物线与AC和AB相交时,设直线BC的解析式为y=mx+n,
把C(1,4),B(4,0)代入,得
,
∴,
∴y=-x+4,
∵抛物线与BC不想交,
∴,即ax2+(2a+1)x+a-1=0无实数根,
∴(2a+1)2-4a(a-1)<0,
解得a<,
又当时,要满足,相当于,所以;
∴;
②当抛物线与AC和BC相交时,
当x=4时,要满足,相当于,所以,,
∴;
综上,a的取值范围为:或
【点睛】
本题属于圆综合题,考查了直线与圆的位置关系,解直角三角形,切线的判定和性质,图形M与图形N是和谐图形的定义等知识,解题的关键是理解题意,学会寻找特殊点,特殊位置解决问题.
4、(1)y=3x−1;(2)(0,5),(0,−1−),(0,−1),(0,).
(3)y3=x+或y3=x.
【分析】
(1)把D坐标代入y=x+1求出n的值,确定出D坐标,把B与D坐标代入y=kx+b中求出k与b的值,确定出直线BD解析式;
(2)如图所示,设P(0,p)分三种情况考虑:当BD=PD;当BD=BP时;当BP=DP时,分别求出p的值,确定出所求即可;
(3)先求出四边形AOCD的面积,再分情况讨论即可求解.
【详解】
解:(1)把D坐标(1,n)代入y=x+1中得:n=2,即D(1,2),
把B(0,−1)与D(1,2)代入y=kx+b中得:,
解得:,
∴直线BD解析式为y=3x−1,
即y2函数表达式为y=3x−1;
(2)如图所示,设P(0,p)分三种情况考虑:
当BD=PD时,可得(0−1)2+(−1−2)2=(0−1)2+(p−2)2,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得:p=5或p=−1(舍去),此时P1(0,5);
当BD=BP时,可得(0−1)2+(−1−2)2=(p+1)2,
解得:p=−1±,
此时P2(0,−1+),P3(0,−1− );
当BP=DP时,可得(p+1)2=(0−1)2+(p−2)2,
解得:p=,即P4(0,),
综上,P的坐标为(0,5),(0,−1−),(0,−1),(0,).
(3)对于直线y=x+1,令y=0,得到x=−1,即E(−1,0);令x=0,得到y=1,
∴A(0,1)
对于直线y=3x−1,令y=0,得到x=,即C(,0),
则S四边形AOCD=S△DEC−S△AEO=××2− ×1×1=
∵一次函数y3=mx+n的图像经过点D,且将四边形AOCD的面积分成1:2.
①设一次函数y3=mx+n的图像与y轴交于Q1点,
∴S△ADQ1=S四边形AOCD=
∴
∴AQ1=
∴Q1(0,)
把D(1,2)、Q1(0,)代入y3=mx+n得
解得
∴y3=x+;
②设一次函数y3=mx+n的图像与x轴交于Q2点,
∴S△CDQ2=S四边形AOCD=
∴
∴CQ2=
∴Q2(,0)
把D(1,2)、Q2(,0)代入y3=mx+n得
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得
∴y3=x;
综上函数y3=mx+n的表达式为y3=x+或y3=x.
【点睛】
此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,利用了分类讨论的思想,熟练掌握一次函数性质是解本题的关键.
5、
【分析】
根据单项式乘以多项式,多项式乘以多项式的法则进行乘法运算,再合并同类项即可.
【详解】
解:
【点睛】
本题考查的是整式的乘法运算,掌握“单项式乘以多项式与多项式乘以多项式的法则”是解本题的关键.
【历年真题】湖南省娄底市中考数学考前摸底测评 卷(Ⅱ)(含答案解析): 这是一份【历年真题】湖南省娄底市中考数学考前摸底测评 卷(Ⅱ)(含答案解析),共31页。试卷主要包含了下列现象等内容,欢迎下载使用。
【历年真题】湖南省怀化市中考数学考前摸底测评 卷(Ⅱ)(含详解): 这是一份【历年真题】湖南省怀化市中考数学考前摸底测评 卷(Ⅱ)(含详解),共18页。
【历年真题】湖南省衡阳市中考数学考前摸底测评 卷(Ⅱ)(含答案详解): 这是一份【历年真题】湖南省衡阳市中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共28页。试卷主要包含了下列方程变形不正确的是等内容,欢迎下载使用。