专题22 锐角三角函数-2024年中考数学一轮复习重难点精讲练(导图+知识点+新题检测)
展开知识点01:锐角三角函数概念
【高频考点精讲】
在Rt△ABC中,∠C=90°
1、正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA,即sinA==
2、余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作csA,即csA=
3、正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA,即tanA=
4、三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数。
知识点02:解直角三角形
【高频考点精讲】
1、解直角三角形常用关系
(1)锐角、直角之间的关系:∠A+∠B=90°;
(2)三边之间的关系:a2+b2=c2;
(3)边角之间的关系
sinA=,csA=,tanA=(a,b,c分别是∠A、∠B、∠C的对边)
2、 sin30°=; cs30°=;tan30°=;
sin45°=;cs45°=;tan45°=1;
sin60°=;cs60°=; tan60°=;
知识点03:解直角三角形的应用
【高频考点精讲】
1、坡度坡角问题
(1)坡度是坡面的垂直高度h和水平宽度l的比,常用i表示。
(2)坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系:i=h:l=tanα。
(3)解决坡度问题,一般通过作高构成直角三角形,坡角是锐角,坡度是锐角的正切值,水平宽度或垂直高度是直角边,本质是解直角三角形问题。
2、仰角俯角问题
(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角。
(2)解决此类问题需要了解角之间的关系,找到与条件和所求相关联的直角三角形,当图形中没有直角三角形时,要通过作高构造直角三角形,把实际问题转化为直角三角形中边角关系问题加以解决。
3、方向角问题
(1)辨别方向角:以第一个方向为始边向另一个方向旋转相应度数。
(2)解决方向角问题,要根据题意理清图形中各角的关系,如果所给方向角不在直角三角形中,可以用“两直线平行,内错角相等”“余角”等知识转化为所需要的角。
检测时间:90分钟 试题满分:100分 难度系数:0.53
一.选择题(共10小题,满分20分,每小题2分)
1.(2分)(2022•陕西)如图,AD是△ABC的高.若BD=2CD=6,tanC=2,则边AB的长为( )
A.3B.3C.3D.6
解:∵2CD=6,
∴CD=3,
∵tanC=2,
∴=2,
∴AD=6,
在Rt△ABD中,由勾股定理得,
AB=,
故选:D.
2.(2分)(2022•随州)如图,已知点B,D,C在同一直线的水平地面上,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,若CD=a,则建筑物AB的高度为( )
A.B.
C.D.
解:设AB=x,
在Rt△ABD中,tanβ=,
∴BD=,
∴BC=BD+CD=a+,
在Rt△ABC中,tanα=,
解得x=.
故选:D.
3.(2分)(2022•宜宾)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则cs∠ADF的值为( )
A.B.C.D.
解:∵四边形ABCD是矩形,
∴∠A=90°,AB∥CD,AD=BC=3,AB=CD=5,
∴∠BDC=∠DBF,
由折叠的性质可得∠BDC=∠BDF,
∴∠BDF=∠DBF,
∴BF=DF,
设BF=x,则DF=x,AF=5﹣x,
在Rt△ADF中,32+(5﹣x)2=x2,
∴x=,
∴cs∠ADF=,
故选:C.
4.(2分)(2022•广元)如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB与CD相交于点P,则cs∠APC的值为( )
A.B.C.D.
解:把AB向上平移一个单位到DE,连接CE,如图.
则DE∥AB,
∴∠APC=∠EDC.
在△DCE中,有EC==,DC==2,DE==5,
∵EC2+DC2=DE2,
故△DCE为直角三角形,∠DCE=90°.
∴cs∠APC=cs∠EDC==.
故选:B.
5.(2分)(2022•十堰)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为( )
A.m(csα﹣sinα)B.m(sinα﹣csα)
C.m(csα﹣tanα)D.﹣
解:过点C作水平地面的平行线,交AB的延长线于D,
则∠BCD=α,
在Rt△BCD中,BC=m,∠BCD=α,
则BD=BC•sin∠BCD=msinα,CD=BC•cs∠BCD=mcsα,
在Rt△ACD中,∠ACD=45°,
则AD=CD=mcsα,
∴AB=AD﹣BD=mcsα﹣msinα=m(csα﹣sinα),
故选:A.
6.(2分)(2022•贵港)如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A,B,D三点在同一直线上,若AB=16m,则这棵树CD的高度是( )
A.8(3﹣)mB.8(3+)mC.6(3﹣)mD.6(3+)m
解:设AD=x米,
∵AB=16米,
∴BD=AB﹣AD=(16﹣x)米,
在Rt△ADC中,∠A=45°,
∴CD=AD•tan45°=x(米),
在Rt△CDB中,∠B=60°,
∴tan60°===,
∴x=24﹣8,
经检验:x=24﹣8是原方程的根,
∴CD=24﹣8=8(3﹣))米,
∴这棵树CD的高度是8(3﹣)米,
故选:A.
7.(2分)(2022•荆州)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan∠OAP的值是( )
A.B.C.D.3
解:如图,过点P作PQ⊥x轴于点Q,
∵OP∥AB,
∴△OCP∽△BCA,
∴CP:AC=OC:BC=1:2,
∵∠AOC=∠AQP=90°,
∴CO∥PQ,
∴OQ:AO=CP:AC=1:2,
∵P(1,1),
∴PQ=OQ=1,
∴AO=2,
∴tan∠OAP===.
故选:C.
8.(2分)(2022•济南)数学活动小组到某广场测量标志性建筑AB的高度.如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B在同一直线上,则该建筑物AB的高度约为( )
(精确到1m.参考数据:sin22°≈0.37,tan22°≈0.40,sin58°≈0.85,tan58°≈1.60)
A.28mB.34mC.37mD.46m
解:由题意可知:AB⊥BC,
在Rt△ADB中,∠B=90°,∠ADB=58°,
∵tan∠ADB=tan58°=,
∴BD=≈(m),
在Rt△ACB中,∠B=90°,∠C=22°,
∵CD=70m,
∴BC=CD+BD=(70+)m,
∴AB=BC×tanC≈(70+)×0.40(m),
解得:AB≈37m,
答:该建筑物AB的高度约为37m.
故选:C.
9.(2分)(2022•金华)一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC=α,则房顶A离地面EF的高度为( )
A.(4+3sinα)mB.(4+3tanα)m
C.(4+)mD.(4+)m
解:过点A作AD⊥BC于点D,如图,
∵它是一个轴对称图形,
∴AB=AC,
∵AD⊥BC,
∴BD=BC=3m,
在Rt△ADB中,
∵tan∠ABC=,
∴AD=BD•tanα=3tanα m.
∴房顶A离地面EF的高度=AD+BE=(4+3tanα)m,
故选:B.
10.(2分)(2022•乐山)如图,在Rt△ABC中,∠C=90°,BC=,点D是AC上一点,连结BD.若tan∠A=,tan∠ABD=,则CD的长为( )
A.2B.3C.D.2
解:过D点作DE⊥AB于E,
∵tan∠A==,tan∠ABD==,
∴AE=2DE,BE=3DE,
∴2DE+3DE=5DE=AB,
在Rt△ABC中,tan∠A=,BC=,
∴,
解得AC=,
∴AB=,
∴DE=1,
∴AE=2,
∴AD=,
∴CD=AC﹣AD=,
故选:C.
二.填空题(共10小题,满分20分,每小题2分)
11.(2分)(2023•西宁)在Rt△ABC中,∠ACB=90°,AB=12,∠A=42°,则BC的长约为 8.0 .(结果精确到0.1.参考数据:sin42°≈0.67,cs42°≈0.74,tan42°≈0.90)
解:如图,
∵∠ACB=90°,
∴sinA=,
∵AB=12,∠A=42°,sin42°≈0.67,
∴BC=12×0.67≈8.0,
故答案为:8.0.
12.(2分)(2023•宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A、B、C三点都在格点上,则sin∠ABC= .
解:如图,连接AC,
由勾股定理得:AB2=22+42=20,BC2=12+32=10,AC2=12+32=10,
则BC2+AC2=AB2,
∴∠ACB=90°,
∴sin∠ABC===,
故答案为:.
13.(2分)(2023•淄博)如图,与斜坡CE垂直的太阳光线照射立柱AB(与水平地面BF垂直)形成的影子,一部分落在地面上,另一部分落在斜坡上.若BC=2米,CD=8.48米,斜坡的坡角∠ECF=32°,则立柱AB的高为 19.2 米(结果精确到0.1米).
解:如图,延长AD交BF于点H,
在Rt△CDH中,CD=8.48米,∠DCH=32°,
∵cs∠DCH=,
∴CH=≈=10(米),
∴BH=CH+BC=10+2=12(米),
∵∠CDH=90°,∠DCH=32°,
∴∠DHC=90°﹣32°=58°,
∵AB⊥BF,
∴∠BAH=90°﹣58°=32°,
在Rt△ABH中,tan∠BAH=,
∴AB=≈=19.2(米),
故答案为:19.2.
14.(2分)(2023•湖北)综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面CD的中点A处竖直上升30米到达B处,测得博雅楼顶部E的俯角为45°,尚美楼顶部F的俯角为30°,已知博雅楼高度CE为15米,则尚美楼高度DF为 (30﹣) 米.(结果保留根号)
解:如图,过点E作EM⊥过点B的水平线于M,过点F作FN⊥过点B的水平线于N,
由题意可知CM=DN=AB=30米,
又∵CE=15米,
∴EM=15米,
在Rt△EBM中,∠EBM=45°,
∴BM=EM=15米,
又∵A是CD的中点,
∴BN=AD=AC=BM=15米,
在Rt△BFN中,tan∠FBN=,
∵∠FBN=30°,BN=15米,
∴,
∴FN=米,
∴DF=(30﹣)米.
故答案为:(30﹣).
15.(2分)(2023•盐城)如图1,位于市区的“铁军”雕塑“大铜马”是盐城市标志性文化名片,如图2,线段AB表示“铁军”雕塑的高,点B,C,D在同一条直线上,且∠ACB=60°,∠ADB=30°,CD=17.5m,则线段AB的长约为 15 m.(计算结果保留整数,参考数据:≈1.7)
解:∵∠ACB=60°,∠ADB=30°,∠ACB=∠ADB+∠CAD,
∴∠ADB=∠CAD=30°,
∴AC=CD=17.5m,
∵∠ABC=90°,∠ACB=60°,
∴AB=AC•sin∠ACB=AC≈15m,
故答案为:15.
16.(2分)(2023•武汉)如图,将45°的∠AOB按下面的方式放置在一把刻度尺上,顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数为2cm,若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数是 2.7 cm(结果精确到0.1cm,参考数据sin37°≈0.60,cs37°≈0.80,tan37°≈0.75).
解:如图,过点B作BD⊥OA于D,过点C作CE⊥OA于E,
在△BOD中,∠BDO=90°,∠DOB=45°,
∴CE=BD=2cm,
在△OCE中,∠COE=37°,∠CEO=90°,
∴tan37°=,
∴OE=2.7cm,
即OC与尺上沿的交点C在尺上的读数是2.7cm.
故答案为:2.7.
17.(2分)(2023•黄石)如图,某飞机于空中A处探测到某地面目标在点B处,此时飞行高度AC=1200米,从飞机上看到点B的俯角为37°,飞机保持飞行高度不变,且与地面目标分别在两条平行直线上同向运动.当飞机飞行943米到达点D时,地面目标此时运动到点E处,从点E看到点D的仰角为47.4°,则地面目标运动的距离BE约为 423 米.(参考数据:tan37°≈,tan47.4°≈)
解:由题意得,∠C=90°,∠ABC=37°,AC=1200米,
∴BC=≈=1600(米),
过D作DH⊥BC于H,
则四边形ACHD是矩形,
∴CH=AD=943米,DH=AC=1200米,
在Rt△DHE中,∠DHE=90°,∠E=47.4°,
∴=1080(米),
∴BE=CH+HE﹣BC=943+1080﹣1600=423(米),
答:地面目标运动的距离BE约为423米.
故答案为:423.
18.(2分)(2023•泰安)在一次综合实践活动中,某学校数学兴趣小组对一电视发射塔的高度进行了测量.如图,在塔前C处,测得该塔顶端B的仰角为50°,后退60m(CD=60m)到D处有一平台,在高2m(DE=2m)的平台上的E处,测得B的仰角为26.6°.则该电视发射塔的高度AB为 55 m.(精确到1m.参考数据:tan50°≈1.2,tan26.6°≈0.5)
解:过点E作EF⊥AB,垂足为F,
由题意得:AF=DE=2m,EF=AD,BA⊥DA,
设AC=x m,
∵CD=60m,
∴EF=AD=AC+CD=(x+60)m,
在Rt△ABC中,∠BCA=50°,
∴AB=AC•tan50°≈1.2x(m),
在Rt△FBE中,∠BEF=26.6°,
∴BF=EF•tan26.6°≈0.5(x+60)m,
∴AB=BF+AF=[2+0.5(x+60)]m,
∴1.2x=2+0.5(x+60),
解得:x=,
∴AB=1.2x≈55(m),
∴该电视发射塔的高度AB约为55m,
故答案为:55.
19.(2分)(2023•眉山)一渔船在海上A处测得灯塔C在它的北偏东60°方向,渔船向正东方向航行12海里到达点B处,测得灯塔C在它的北偏东45°方向,若渔船继续向正东方向航行,则渔船与灯塔C的最短距离是 6+6 海里.
解:过点C作CH⊥AB于H.
∵∠DAC=60°,∠CBE=45°,
∴∠CAH=90°﹣∠CAD=30°,∠CBH=90°﹣∠CBE=45°,
∴∠BCH=90°﹣45°=45°=∠CBH,
∴BH=CH,
在Rt△ACH中,∠CAH=30°,AH=AB+BH=12+CH,tan30°=,
∴CH=(12+CH),
解得CH=6(+1).
答:渔船与灯塔C的最短距离是6(+1)海里.
故答案为:6+6.
20.(2分)(2023•枣庄)如图所示,桔槔是一种原始的汲水工具,它是在一根竖立的架子上加上一根细长的杠杆,末端悬挂一重物,前端悬挂水桶.当人把水桶放入水中打满水以后,由于杠杆末端的重力作用,便能轻易把水提升至所需处,若已知:杠杆AB=6米,AO:OB=2:1,支架OM⊥EF,OM=3米,AB可以绕着点O自由旋转,当点A旋转到如图所示位置时∠AOM=45°,此时点B到水平地面EF的距离为 (3+) 米.(结果保留根号)
解:过点O作OC⊥BT,垂足为C,
由题意得:BC∥OM,
∴∠AOM=∠OBC=45°,
∵AB=6米,AO:OB=2:1,
∴AO=4米,OB=2米,
在Rt△OBC中,BC=OB•cs45°=2×=(米),
∵OM=3米,
∴此时点B到水平地面EF的距离=BC+OM=(3+)米,
故答案为:(3+).
三.解答题(共8小题,满分60分)
21.(6分)(2023•达州)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m,当摆角∠BOC恰为26°时,座板离地面的高度BM为0.9m,当摆动至最高位置时,摆角∠AOC为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m;参考数据:sin26°≈0.44,cs26°≈0.9,tan26°≈0.49,sin50°≈0.77,cs50°≈0.64,tan50°≈1.2)
解:过B作BT⊥ON于T,过A作AK⊥ON于K,如图:
在Rt△OBT中,
OT=OB•cs26°=3×0.9=2.7(m),
∵∠M=∠MNT=∠BTN=90°,
∴四边形BMNT是矩形,
∴TN=BM=0.9m,
∴ON=OT+TN=3.6(m),
在Rt△AOK中,
OK=OA•cs50°=3×0.64=1.92(m),
∴KN=ON﹣OK=3.6﹣1.92≈1.7(m),
∴座板距地面的最大高度为1.7m.
22.(6分)(2023•宁波)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.
(1)如图2,在P点观察所测物体最高点C,当量角器零刻度线上A,B两点均在视线PC上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式表示β.
(2)如图3,为了测量广场上空气球A离地面的高度,该小组利用自制简易测角仪在点B,C分别测得气球A的仰角∠ABD为37°,∠ACD为45°,地面上点B,C,D在同一水平直线上,BC=20m,求气球A离地面的高度AD.(参考数据:sin37°≈0.60,cs37°≈0.80,tan37°≈0.75)
解:(1)根据题意得:β=90°﹣α;
(2)设AD=x m,
∵∠ACD=45°,∠ADB=90°,
∴CD=AD=x m,
∵BC=20m,
∴BD=(20+x)m,
在Rt△ABD中,tan∠ABD=,
∴tan37°=,即0.75=,
解得:x=60,
经检验,x=60是分式方程的解,
∴AD=60(m),
答:气球A离地面的高度AD是60m.
23.(8分)(2023•河南)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,AB=30cm,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8m,到树EG的距离AF=11m,BH=20cm.求树EG的高度(结果精确到0.1m).
解:由题意可知,∠BAE=∠MAF=∠BAD=90°,FG=1.8m,
则∠EAF+∠BAF=∠BAF+∠BAH=90°,
∴∠EAF=∠BAH,
∵AB=30cm,BH=20cm,
则tan∠EAF==,
∴tan∠EAF==tan∠BAH=,
∵AF=11m,
则,
∴EF=,
∴EG=EF+FG=1.8≈9.1m.
答:树EG的高度约为9.1m.
24.(8分)(2023•德州)如图,某校综合实践小组在两栋楼之间的水平地面E处放置一个测角仪,经测量,∠AEB=53°,∠CED=45°,已知BE=60米,ED=20米.求两栋楼楼顶A,C之间的距离(参考数据:sin53°≈,cs53°≈,tan53°≈,测角仪的高度忽略不计).
解:如图,过点C作CF⊥AB,交AB于点F.
在Rt△CED中,∠CED=45°,
∴△CED是等腰直角三角形,
∴CD=DE=20米,
在Rt△ABE中,∠AEB=53°,
∴,
∴,
∴AB=80米.
由题意,得 BF=CD=DE=20米,CF=BD=BE+ED=80米,
∴AF=AB﹣BF=80﹣20=60(米),
在 Rt△ACF中,(米).
∴A,C之间的距离为100米.
25.(8分)(2023•长沙)2023年5月30日9点31分,“神舟十六号”载人飞船在中国酒泉卫星发射中心点火发射,成功把景海鹏、桂海潮、朱杨柱三名航天员送入到中国空间站.如图,在发射的过程中,飞船从地面O处发射,当飞船到达A点时,从位于地面C处的雷达站测得AC的距离是8km,仰角为30°;10s后飞船到达B处,此时测得仰角为45°.
(1)求点A离地面的高度AO;
(2)求飞船从A处到B处的平均速度.(结果精确到0.1km/s,参考数据:≈1.73)
解:(1)在Rt△AOC中,∵∠AOC=90°,∠ACO=30°,AC=8km,
∴AO=AC=(km),
(2)在Rt△AOC中,∵∠AOC=90°,∠ACO=30°,AC=8km,
∴OC=AC=4(km),
在Rt△BOC中,∵∠BOC=90°,∠BCO=45°,
∴∠BCO=∠OBC=45°,
∴OB=OC=4(km),
∴AB=OB﹣OA=(4)km,
∴飞船从A处到B处的平均速度=≈0.3(km/s).
26.(8分)(2023•辽宁)暑假期间,小明与小亮相约到某旅游风景区登山.需要登顶600m高的山峰,由山底A处先步行300m到达B处,再由B处乘坐登山缆车到达山顶D处.已知点A,B,D,E,F在同一平面内,山坡AB的坡角为30°,缆车行驶路线BD与水平面的夹角为53°(换乘登山缆车的时间忽略不计).
(1)求登山缆车上升的高度DE;
(2)若步行速度为30m/min,登山缆车的速度为60m/min,求从山底A处到达山顶D处大约需要多少分钟(结果精确到0.1min).
(参考数据:sin53°≈0.80,cs53°≈0.60,tan53°≈1.33)
解:(1)如图,过点B作BM⊥AF于点M,由题意可知,∠A=30°,∠DBE=53°,DF=600m,AB=300m,
在Rt△ABM中,∠A=30°,AB=300m,
∴BM=AB=150m=EF,
∴DE=DF﹣EF=600﹣150=450(m),
答:登山缆车上升的高度DE为450m;
(2)在Rt△BDE中,∠DBE=53°,DE=450m,
∴BD=
≈
=562.5(m),
∴需要的时间t=t步行+t缆车
=+
≈19.4(min),
答:从山底A处到达山顶D处大约需要19.4分钟.
27.(8分)(2023•济南)图1是某越野车的侧面示意图,折线段ABC表示车后盖,已知AB=1m,BC=0.6m,∠ABC=123°,该车的高度AO=1.7m.如图2,打开后备箱,车后盖ABC落在AB'C'处,AB'与水平面的夹角∠B'AD=27°.
(1)求打开后备箱后,车后盖最高点B'到地面l的距离;
(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m,参考数据:sin27°≈0.454,cs27°≈0.891,tan27°≈0.510,≈1.732)
解:(1)如图,作B′E⊥AD,垂足为点E,
在Rt△AB′E中,
∵∠B′AD=27°,AB′=AB=1m,
∴sin27°=,
∴B′E=AB′sin27°≈1×0.454=0.454m,
∵平行线间的距离处处相等,
∴B′E+AO=0.454+1.7=2.154≈2.15m,
答:车后盖最高点B′到地面的距离为2.15m.
(2)没有危险,理由如下:
如图,过C′作C′F⊥B′E,垂足为点F,
∵∠B′AD=27°,∠B′EA=90°,
∴∠AB′E=63°,
∵∠AB′C′=∠ABC=123°,
∴∠C′B′F=∠AB′C′﹣∠AB′E=60°,
在Rt△B′FC′中,B′C′=BC=0.6m,
∴B′F=B′C′•cs60°=0.3m.
∵平行线间的距离处处相等,
∴C′到地面的距离为2.15﹣0.3=1.85m.
∵1.85>1.8,
∴没有危险.
28.(8分)(2023•苏州)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,BE,CD,GF为长度固定的支架,支架在A,D,G处与立柱AH连接(AH垂直于MN,垂足为H),在B,C处与篮板连接(BC所在直线垂直于MN),EF是可以调节长度的伸缩臂(旋转点F处的螺栓改变EF的长度,使得支架BE绕点A旋转,从而改变四边形ABCD的形状,以此调节篮板的高度).已知AD=BC,DH=208cm,测得∠GAE=60°时,点C离地面的高度为288cm.调节伸缩臂EF,将∠GAE由60°调节为54°,判断点C离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin54°≈0.8,cs54°≈0.6)
解:点C离地面的高度升高了,
理由:如图,当∠GAE=60°时,过点C作CK⊥HA,交HA的延长线于点K,
∵BC⊥MN,AH⊥MN,
∴BC∥AH,
∵AD=BC,
∴四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ADC=∠GAE=60°,
∵点C离地面的高度为288cm,DH=208cm,
∴DK=288﹣208=80(cm),
在Rt△CDK中,CD===160(cm),
如图,当∠GAE=54°,过点C作CQ⊥HA,交HA的延长线于点Q,
在Rt△CDQ中,CD=160cm,
∴DQ=CD•cs54°≈160×0.6=96(cm),
∴96﹣80=16(cm),
∴点C离地面的高度升高约16cm
科学计算器按键顺序
计算结果(已取近似值)
0.530
0.848
0.625
专题21 图形的相似-2024年中考数学一轮复习重难点精讲练(导图+知识点+新题检测): 这是一份专题21 图形的相似-2024年中考数学一轮复习重难点精讲练(导图+知识点+新题检测),文件包含专题21图形的相似教师版docx、专题21图形的相似学生版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
专题12 反比例函数-2024年中考数学一轮复习重难点精讲练(导图+知识点+新题检测): 这是一份专题12 反比例函数-2024年中考数学一轮复习重难点精讲练(导图+知识点+新题检测),文件包含专题12反比例函数教师版docx、专题12反比例函数学生版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
专题11 一次函数-2024年中考数学一轮复习重难点精讲练(导图+知识点+新题检测): 这是一份专题11 一次函数-2024年中考数学一轮复习重难点精讲练(导图+知识点+新题检测),文件包含专题11一次函数教师版docx、专题11一次函数学生版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。