所属成套资源:2024年中考数学必考考点总结题型专训(原卷版+解析)
2024年中考数学必考考点总结题型专训专题06全等三角形的性质与判定篇(原卷版+解析)
展开
这是一份2024年中考数学必考考点总结题型专训专题06全等三角形的性质与判定篇(原卷版+解析),共27页。试卷主要包含了已知等内容,欢迎下载使用。
三角形的三边关系:
三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
三角形的内角和定理:
三角形的三个内角之和等于180°。
三角形的外角定理:
三角形的一个外角等于它不相邻的两个内角之和。大于它不相邻的任意一个内角。
全等三角形的性质:
若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。
全等三角形的判定:
①边边边(SSS):三条边分别对应性相等的两个三角形全等。
②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。
③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。
④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。
⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。
全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。
在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。
微专题
1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.
2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.
3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.
4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.
(1)求证:△ABC≌△ADC;
(2)若AB=4,CD=3,求四边形ABCD的面积.
5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.
6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.
(1)求证:MP=NP;
(2)若AB=a,求线段PH的长(结果用含a的代数式表示).
7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC=∠DEF,③∠ACB=∠DFE.
(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.
你选取的条件为(填写序号) (只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是 (填“SSS”或“SAS”或“ASA”或“AAS”);
(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.
8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.
(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;
(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.
9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.
(1)求证:△ABD≌△ACE;
(2)若∠EAC=60°,求∠CED的度数.
10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.
(1)求证:△ABC≌△ECD;
(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.
11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.
(1)求证:△ABD≌△ACE;
(2)若∠BAD=22.5°时,求BD的长.
12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.
(1)求证:△CEF≌△ADF;
(2)求tan∠DAF的值(用含x的式子表示).
13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE=BF.请解答下列问题:
(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;
(2)请选择(1)中任意一种结论进行证明;
(3)若AB=6,CE=2,∠F=60°,S△ABC=12,则BC= ,BF= .
14.△ABC和△ADE都是等边三角形.
(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA+PB=PC(或PA+PC=PB)成立(不需证明);
(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;
(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.
15.【情境再现】
甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O顺时针旋转一个锐角到图②位置.小莹用作图软件Gegebra按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC交OG于F,通过证明△OBE≌△OAF,可得OE=OF.
请你证明:AG=BH.
【迁移应用】
延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.
【拓展延伸】
小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.
专题06 全等三角形的判定与性质
知识回顾
三角形的三边关系:
三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
三角形的内角和定理:
三角形的三个内角之和等于180°。
三角形的外角定理:
三角形的一个外角等于它不相邻的两个内角之和。大于它不相邻的任意一个内角。
全等三角形的性质:
若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。
全等三角形的判定:
①边边边(SSS):三条边分别对应性相等的两个三角形全等。
②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。
③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。
④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。
⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。
全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。
在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。
微专题
1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.
【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.
【解答】证明:∵∠3=∠4,
∴∠ACB=∠ACD,
在△ACB和△ACD中,
,
∴△ACB≌△ACD(ASA),
∴AB=AD.
2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.
【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.
【解答】证明:∵△ABC是等腰三角形,
∴∠EBC=∠DCB,
在△EBC与△DCB中,
,
∴△EBC≌△DCB(SAS),
∴BD=CE.
3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.
【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.
【解答】解:∵∠BAD=∠EAC,
∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,
在△BAC与△EAD中,
,
∴△BAC≌△EAD(SAS),
∴∠D=∠C=50°.
4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.
(1)求证:△ABC≌△ADC;
(2)若AB=4,CD=3,求四边形ABCD的面积.
【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS可得△ABC≌△ADC;
(2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=S△ADC,求出S△ABC=AB•BC=6,即可得四边形ABCD的面积是12.
【解答】(1)证明:∵AC平分∠BAD,
∴∠BAC=∠DAC,
∵CB⊥AB,CD⊥AD,
∴∠B=90°=∠D,
在△ABC和△ADC中,
,
∴△ABC≌△ADC(AAS);
(2)解:由(1)知:△ABC≌△ADC,
∴BC=CD=3,S△ABC=S△ADC,
∴S△ABC=AB•BC=×4×3=6,
∴S△ADC=6,
∴S四边形ABCD=S△ABC+S△ADC=12,
答:四边形ABCD的面积是12.
5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.
【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.
【解答】证明:∵DE∥AB,
∴∠EDC=∠B,
在△CDE和△ABC中,
,
∴△CDE≌△ABC(ASA),
∴DE=BC.
6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.
(1)求证:MP=NP;
(2)若AB=a,求线段PH的长(结果用含a的代数式表示).
【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;
(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.
【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:
在等边△ABC中,∠A=∠B=∠ACB=60°,
∵MQ∥BC,
∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,
∴△AMQ是等边三角形,
∴AM=QM,
∵AM=CN,
∴QM=CN,
在△QMP和△CNP中,
,
∴△QMP≌△CNP(AAS),
∴MP=NP;
(2)解:∵△AMQ是等边三角形,且MH⊥AC,
∴AH=HQ,
∵△QMP≌△CNP,
∴QP=CP,
∴PH=HQ+QP=AC,
∵AB=a,AB=AC,
∴PH=a.
7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC=∠DEF,③∠ACB=∠DFE.
(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.
你选取的条件为(填写序号) (只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是 (填“SSS”或“SAS”或“ASA”或“AAS”);
(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.
【分析】(1)根据SSS即可证明△ABC≌△DEF,即可解决问题;
(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.
【解答】(1)解:在△ABC和△DEF中,
,
∴△ABC≌△DEF(SSS),
∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,
选取的条件为①,判定△ABC≌△DEF的依据是SSS.
故答案为:①,SSS;(答案不唯一).
(2)证明:∵△ABC≌△DEF.
∴∠A=∠EDF,
∴AB∥DE.
8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.
(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;
(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.
【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;
(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.
【解答】(1)证明:在△BCD和△FCE中,
,
∴△BCD≌△FCE(SAS),
∴∠DBC=∠EFC,
∴BD∥EF,
∵AF⊥EF,
∴BD⊥AF;
(2)解:由题意补全图形如下:
CD=CH.
证明:延长BC到F,使CF=BC,连接AF,EF,
∵AC⊥BF,BC=CF,
∴AB=AF,
由(1)可知BD∥EF,BD=EF,
∵AB2=AE2+BD2,
∴AF2=AE2+EF2,
∴∠AEF=90°,
∴AE⊥EF,
∴BD⊥AE,
∴∠DHE=90°,
又∵CD=CE,
∴CH=CD=CE.
9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.
(1)求证:△ABD≌△ACE;
(2)若∠EAC=60°,求∠CED的度数.
【分析】(1)可利用SAS证明结论;
(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED=45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解
【解答】(1)证明:∵∠BAC=∠DAE=90°,
∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS);
(2)解:∵△ABD≌△ACE,
∴∠ACE=∠ABD,
∵△ABC和△ADE都是等腰直角三角形,
∴∠ACE=∠ABD=∠AED=45°,
∵∠EAC=60°,
∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,
∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.
10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.
(1)求证:△ABC≌△ECD;
(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.
【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;
(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC=5,再根据勾股定理求出DE的长,即可求出△BCD的面积.
【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,
∴∠ABC=∠ECD,
在△ABC和△ECD中,
,
∴△ABC≌△ECD(SAS).
(2)解:∵∠A=90°,
∴∠CED=∠A=90°,
∴∠BED=180°﹣∠CED=90°,
设BE=x,
∵EC=AB=3,BD=2,
∴CD=BC=3+x,
∵BD2﹣BE2=CD2﹣EC2=DE2,
∴(2)2﹣x2=(3+x)2﹣32,
整理得x2+3x﹣10=0,
解得x1=2,x2=﹣5(不符合题意,舍去),
∴BE=2,BC=3+2=5,
∴DE===4,
∴S△BCD=BC•DE=×5×4=10,
∴△BCD的面积为10.
11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.
(1)求证:△ABD≌△ACE;
(2)若∠BAD=22.5°时,求BD的长.
【分析】(1)由“SAS”可证△ABD≌△ACE;
(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD=1,即可求解.
【解答】(1)证明:∵∠BAC=90°=∠DAE,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS);
(2)解:∵∠BAC=90°,AB=AC=1,
∴BC=,∠B=∠ACB=45°,
∵∠BAD=22.5°,
∴∠ADC=67.5°=∠CAD,
∴AC=CD=1,
∴BD=﹣1.
12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.
(1)求证:△CEF≌△ADF;
(2)求tan∠DAF的值(用含x的式子表示).
【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B=90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;
(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.
【解答】(1)证明:∵四边形ABCD是矩形,
∴∠B=∠D=90°,BC=AD,
根据折叠的性质得:BC=CE,∠E=∠B=90°,
∴∠E=∠D=90°,AD=CE,
在△CEF与△ADF中,
,
∴△CEF≌△ADF(AAS);
(2)解:设DF=a,则CF=8﹣a,
∵四边形ABCD是矩形,
∴AB∥CD,AD=BC=x,
∴∠DCA=∠BAC,
根据折叠的性质得:∠EAC=∠BAC,
∴∠DCA=∠EAC,
∴AF=CF=8﹣a,
在Rt△ADF中,
∵AD2+DF2=AF2,
∴x2+a2=(8﹣a)2,
∴a=,
∴tan∠DAF==.
13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE=BF.请解答下列问题:
(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;
(2)请选择(1)中任意一种结论进行证明;
(3)若AB=6,CE=2,∠F=60°,S△ABC=12,则BC= ,BF= .
【分析】(1)根据图形分别得出答案;
(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;
(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.
【解答】解:(1)图②:BC+BE=BF,
图③:BE﹣BC=BF;
(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,
∴△ABC≌△DFE(ASA),
∴BC=EF,
∵BE=BC+CE,
∴BC+BE=EF+BC+CE=BF;
图③:∵AB=DF,∠A=∠D,∠B=∠F,
∴△ABC≌△DFE(ASA),
∴BC=EF,
∵BE=BF+EF,
∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;
(3)当点E在BC上时,如图,作AH⊥BC于H,
∵∠B=∠F=60°,
∴∠BAH=30°,
∴BH=3,
∴AH=3,
∵S△ABC=12,
∴=12,
∴BC=8,
∵CE=2,
∴BF=BE+EF=8﹣2+8=14;
同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,
故答案为:8,14或18.
14.△ABC和△ADE都是等边三角形.
(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA+PB=PC(或PA+PC=PB)成立(不需证明);
(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;
(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.
【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;
(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.
【解答】解:(2)PB=PA+PC,理由如下:
如图②,在BP上截取BF=PC,连接AF,
∵△ABC、△ADE都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAC+∠CAD=∠CAD+∠DAE,
即∠DAB=∠EAC,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,
∵AB=AC,BF=CP,
∴△BAF≌△CAP(SAS),
∴AF=AP,∠BAF=∠CAP,
∴∠BAC=∠PAF=60°,
∴△AFP是等边三角形,
∴PF=PA,
∴PB=BF+PF=PC+PA;
(3)PC=PA+PB,理由如下:
如图③,在PC上截取CM=PB,连接AM,
同理得:△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,
∵AB=AC,PB=CM,
∴△AMC≌△APB(SAS),
∴AM=AP,∠BAP=∠CAM,
∴∠BAC=∠PAM=60°,
∴△AMP是等边三角形,
∴PM=PA,
∴PC=PM+CM=PA+PB.
15.【情境再现】
甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O顺时针旋转一个锐角到图②位置.小莹用作图软件Gegebra按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC交OG于F,通过证明△OBE≌△OAF,可得OE=OF.
请你证明:AG=BH.
【迁移应用】
延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.
【拓展延伸】
小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.
【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF(SAS),得BH=AG;
【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;
【拓展延伸】设AB交OH于T,OG交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.
【解答】【情境再现】
证明:由阅读材料知△OBE≌△OAF,
∴BE=AF,OE=OF,∠BEO=∠AFO,
∴∠BEH=∠AFG,
∵OH=OG,
∴OH﹣OE=OG﹣OF,即EH=GF,
在△BHE和△AGF中,
,
∴△BHE≌△AGF(SAS),
∴BH=AG;
【迁移应用】
解:猜想:DG⊥BH;证明如下:
由【情境再现】知:△BHE≌△AGF,
∴∠BHE=∠AGF,
∵∠HOG=90°,
∴∠AGF+∠GPO=90°,
∴∠BHE+∠GPO=90°,
∵∠GPO=∠HPD,
∴∠BHE+∠HPD=90°,
∴∠HDP=90°,
∴DG⊥BH;
【拓展延伸】
解:猜想:BH=AG,证明如下:
设AB交OH于T,OG交AC于K,如图:
由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,
∴∠AOB=90°,
∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,
∴△BOT∽△AOK,
∴===,∠BTO=∠AKO,
∴OT=OK,BT=AK,∠BTH=∠AKG,
∵OH=GO,
∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,
∴==,
∴△BTH∽△AKG,
∴==,
∴BH=AG.
相关试卷
这是一份2024年中考数学必考考点总结题型专训专题33概率篇(原卷版+解析),共25页。
这是一份2024年中考数学必考考点总结题型专训专题32统计篇(原卷版+解析),共35页。
这是一份2024年中考数学必考考点总结题型专训专题30圆篇(原卷版+解析),共46页。