|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022-2023学年陕西省西安市碑林区铁一中学八年级(下)月考数学试卷(5月份)(含解析)
    立即下载
    加入资料篮
    2022-2023学年陕西省西安市碑林区铁一中学八年级(下)月考数学试卷(5月份)(含解析)01
    2022-2023学年陕西省西安市碑林区铁一中学八年级(下)月考数学试卷(5月份)(含解析)02
    2022-2023学年陕西省西安市碑林区铁一中学八年级(下)月考数学试卷(5月份)(含解析)03
    还剩19页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年陕西省西安市碑林区铁一中学八年级(下)月考数学试卷(5月份)(含解析)

    展开
    这是一份2022-2023学年陕西省西安市碑林区铁一中学八年级(下)月考数学试卷(5月份)(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    1.下列图形中是中心对称图形,而不是轴对称图形的是( )
    A. 等边三角形B. 平行四边形C. 矩形D. 菱形
    2.若aA. a+3b−3C. |a|<|b|D. −3a<−3b
    3.若分式x−2x−1有意义,则x的取值范围是( )
    A. x≠1B. x≠2C. x=1D. x=2
    4.一个多边形的内角和是外角和的3倍,这个多边形的边数为( )
    A. 5B. 6C. 7D. 8
    5.直角三角形两条直角边长分别是5和12,则第三边上的中线长为( )
    A. 5B. 6C. 6.5D. 12
    6.一次函数y=2x+1的图象向上平移2个单位,得到新的一次函数表达式是( )
    A. y=2x−1B. y=2x+3C. y=2x−2D. y=2x−3
    7.如图,在△ABC中,AC的垂直平分线交AB于点D,垂足为点E,CD平分∠ACB,若∠A=50°,则∠B的度数为( )
    A. 25°B. 30°C. 35°D. 40°
    8.如图,在菱形ABCD中,对角线AC与BD相交于点O,且AC=12,BD=16,则菱形的高AE为( )
    A. 9.6B. 4.8C. 10D. 5
    9.若关于x的不等式组x≥ax<6有3个整数解,则a的值取值范围是( )
    A. 210.在综合与实践课上,美丽老师让同学们以“矩形纸片的折叠”为主题开展教学活动.如图,矩形ABCD中,AB=3,AD=4,点E、F分别是边AB、AD上的点,连接CE、CF,分别将△BCE和△CDF沿CE、CF翻折,点B、D的对应点分别为点G、H,若BE=1,且C、H、G三点共线,则DF的长度是( )
    A. 2B. 115C. 95D. 65
    二、填空题:本题共6小题,每小题3分,共18分。
    11.将x2+5x+c因式分解得(x+1)(x+4),则c的值为______.
    12.如图,AB=AC,点B、C、D在一条直线上,且CD=CE,若∠A=20°,则∠D的度数是______°.
    13.如图,正六边形ABCDEF的边长为3,则对角线BE的长为______.
    14.关于x的方程ax+1x−2=−1的解是正数,则a的取值范围是______.
    15.如图,矩形ABCD中,AB=6,AD=8,P是AB上不与A和B重合的一个动点,过点P分别作AC和BD的垂线,垂足为E,F,则PE+PF的值是______.
    16.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC=2AD=2AE=4,点O在边BC上满足OC=3OB,将△ADE绕着点A顺时针旋转,连接CE,记CE的中点为P,则OP的最大值是______.
    三、解答题:本题共9小题,共72分。解答应写出文字说明,证明过程或演算步骤。
    17.(本小题8分)
    因式分解:
    (1)ma2−2ma+m;
    (2)9(x−y)2−(x+y)2.
    18.(本小题8分)
    计算:
    (1)解不等式:2x−1>3x−12;
    (2)解方程:x−2x−3x−2=1.
    19.(本小题8分)
    先化简,再求值:(mm−2−2mm2−4)÷mm+2,其中m= 5.
    20.(本小题8分)
    如图,已知△ABC中,∠ACB=90°,∠CAB=60°,请你利用尺规在BC边上找一点P,使得BP=2PC.(不写作法,保留作图痕迹)
    21.(本小题8分)
    如图,在四边形ABCD中,AD//BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.
    22.(本小题8分)
    如图,△ABD和△BCD分别是等腰直角三角形和等边三角形,点E、F、G、H分别是AB、BC、CD、DA边上的中点,连接EF、FG、GH、HE.
    (1)填空:若GF=3 2,则AD的长度是______.
    (2)判断四边形EFGH的形状,并说明理由.
    23.(本小题8分)
    利用分式方程解应用题:某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
    (1)今年5月份A款汽车每辆售价多少万元?
    (2)为了增加收入,汽车销售公园决定两经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,如何选择A,B款汽车的进货方案,使得总费用最少?
    24.(本小题8分)
    如图,在平面直角坐标系中,直线l分别交x轴的负半轴于点A,y轴正半轴于点B点,且OA=2,OB=2 3,点C在x轴正半轴上,满足AC=2AB.
    (1)求点C的坐标;
    (2)若点D是y轴上的一点,在坐标平面内是否存在点E,使得以A、B、D、E为顶点的四边形是菱形?若存在,请直接写出E点的坐标;若不存在,请说明理由.
    25.(本小题8分)
    (1)如图1,△ABC为边长为2的等边三角形,D是AB边上一点且CD平分△ABC的面积,则线段CD的长度为______;
    (2)如图2,在平行四边形ABCD中,AB=6,BC=8,∠B=60°,点M在AD上,且AM=6,点N在BC上,若MN平分四边形ABCD的面积,则MN的长度为______;
    (3)如图3,凸四边形ABCD为某空地的示意图,经测量∠ABC=90°,AB=320米,BC=240米,DA=DC=100 5米,点E在AB边上满足∠ADE=∠CDE.为了美化环境,现规划在空地内种植花卉,并从点D修一条笔直的观光小路DF(点F在AB上),请问是否存在DF,使得DF平分该空地的面积?若存在,请求出EF的长度;若不存在,请说明理由.(小路DF的宽度不计).
    答案和解析
    1.【答案】B
    【解析】解:A、等边三角形是轴对称图形,不是中心对称图形,故A选项错误;
    B、平行四边形不是轴对称图形,是中心对称图形,故B选项正确;
    C、矩形是轴对称图形,也是中心对称图形,故C选项错误;
    D、菱形是轴对称图形,也是中心对称图形,故D选项错误.
    故选:B.
    根据轴对称图形与中心对称图形的概念结合常见图形的形状求解.
    如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
    如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
    本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.
    2.【答案】A
    【解析】解:∵a∴a+3−3b,
    ∴选项A正确,符合题意,选项B、D错误,不符合题意,
    当a=−5,b=0时,满足a|b|,
    ∴选项C错误,不符合题意.
    故选:A.
    不等式的基本性质:基本性质1,不等式两边同时加上或减去同一个整式,不等号的方向不变;基本性质2,不等式两边同时乘以或除以同一个正数,不等号的方向不变;基本性质3,不等式两边同时乘以或除以同一个负数,不等号的方向改变.根据性质即可得出答案.
    本题考查了不等式的基本性质,掌握三个性质是解决本题的关键.
    3.【答案】A
    【解析】解:当分母x−1≠0,即x≠1时,分式x−2x−1有意义.
    故选:A.
    分式有意义:分母不为零.
    本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:
    (1)分式无意义⇔分母为零;
    (2)分式有意义⇔分母不为零;
    (3)分式值为零⇔分子为零且分母不为零.
    4.【答案】D
    【解析】解:设这个多边形的边数为x.
    由题意得,180°(x−2)=360°×3.
    ∴x=8.
    ∴这个多边形的边数为8.
    故选:D.
    设这个多边形的边数为x,根据多边形的边数与内角和的关系以及任意多边形的外角和等于360度,得180°(x−2)=360°×3,从而解决此题.
    本题主要考查多边形的边数与内角和的关系、任意多边形的外角和,熟练掌握多边形的边数与内角和的关系、任意多边形的外角和等于360度是解决本题的关键.
    5.【答案】C
    【解析】解:∵直角三角形两条直角边长分别是5和12,
    ∴斜边= 52+122=13,
    ∴第三边上的中线长为12×13=6.5.
    故选:C.
    根据勾股定理列式求出斜边的长度,再根据直角三角形斜边上的中线等于斜边的一半解答即可.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.
    6.【答案】B
    【解析】解:把一次函数y=2x+1,向上平移2个单位长度,得到图象解析式是y=2x+1+2=2x+3,
    故选:B.
    求直线y=kx+b(k≠0)平移后的解析式时要注意平移时k的值不变,只有b发生变化.
    本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.
    7.【答案】B
    【解析】【分析】
    本题主要考查了角平分线定义、线段垂直平分线的性质以及三角形内角和定理,掌握线段垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.
    依据线段垂直平分线的性质,即可得到AD=CD,进而得到∠A=∠ACD,再根据角平分线的定义,即可得出∠ACB的度数,根据三角形内角和定理,即可得到∠B的度数.
    【解答】
    解:∵DE垂直平分AC,
    ∴AD=CD,
    ∴∠ACD=∠A=50°,
    又∵CD平分∠ACB,
    ∴∠ACB=2∠ACD=100°,
    ∴∠B=180°−∠A−∠ACB=180°−50°−100°=30°.
    故选B
    8.【答案】A
    【解析】【分析】
    根据菱形的性质得到BO=12BD=8,OC=12AC=6,AC⊥BD,根据勾股定理得到BC= BO2+OC2= 82+62=10,根据菱形的面积公式即可得到结论.
    本题考查了菱形的性质,勾股定理,孰练掌握菱形的相关性质,勾股定理是解决本题的关键
    【解答】
    解:在菱形ABCD中,AC=12,BD=16,
    ∴BO=12BD=8,OC=12AC=6,AC⊥BD,
    ∴BC= BO2+OC2= 82+62=10,
    ∵AE⊥BC,
    ∴S菱形ABCD=12AC⋅BD=BC⋅AE,
    ∴AE=AC⋅BD2BC=12×1620=9.6,
    故选:A.
    9.【答案】A
    【解析】解:∵关于x的不等式组x≥ax<6有且只有3个整数解,
    ∴3个整数解为3,4,5,
    ∴2故选:A.
    先根据题意找出整数解,再得出选项即可.
    本题考查了解一元一次不等式组和不等式组的整数解,求出不等式组的整数解是解题关键.
    10.【答案】C
    【解析】解:延长CG交AB于点M,连接FM,

    ∵矩形ABCD中,AB=3,AD=4,
    ∴AB=CD=3,AD=BC=4,∠A=∠B=90°,
    依据翻折的性质可知,
    BE=GE=1,BC=GC=4,∠EGC=∠B=90°,CD=CH=3,DF=HF,∠D=∠CHF=90°,
    设EM=y,DF=x,
    ∵S△BCM=S△BCE+S△ECM,
    ∴12BC⋅BM=12BC⋅BE+12CM⋅EG,
    即12×4(1+y)=12×4×1+12(4+GM)×1,
    解得GM=4y−4,
    在Rt△EGM中,GE2+GM2=ME2,
    ∴12+(4y−4)2=y2,
    解得y1=1715,y2=1(不符合题意,舍去),
    ∴GM=4×1715−4=815,AM=AB−BE−EM=1315,
    ∴HM=CG+GM−CH=2315,
    在Rt△AFM中,FM2=AF2+AM2=(4−x)2+(1315)2,
    在Rt△HFM中,FM2=HF2+HM2=x2+(2315)2,
    ∴(4−x)2+(1315)2=x2+(2315)2,
    解得x=95,
    即DF=95.
    故选:C.
    延长CG交AB于点M,连接FM,设EM=y,DF=x,利用矩形的性质,折叠的性质以及等面积法(S△BCM=S△BCE+S△ECM)可求GM=4y−4,在Rt△EGM中,利用勾股定理可求EM=y=1715,分别在Rt△AFM和Rt△HFM中,利用勾股定理,可得出AF2+AM2=FM2=HF2+HM2,然后代入数值解方程即可.
    本题考查了矩形的性质,折叠的性质,勾股定理等知识,利用等面积法求出GM=4y−4是解题的关键.
    11.【答案】4
    【解析】解:(x+1)(x+4)
    =x2+4x+x+4
    =x2+5x+4
    =x2+5x+c,
    ∴c=4.
    故答案为:4.
    把(x+1)(x+4)展开再根据对应项系数相等即可求解.
    本题考查了整式乘法与因式分解,理解合并同类项之后相同的项系数相同是解题的关键.
    12.【答案】40
    【解析】解:∵AB=AC,
    ∴∠B=∠ACB,
    又∠A+∠B+∠ACB=180°,∠A=20°,
    ∴∠B=∠ACB=180°−∠A2=80°,
    ∵CD=CE,
    ∴∠D=∠CED,
    又∠ACB=∠D+∠CED,
    ∴∠D=∠CED=12∠ACB=40°.
    故答案为:40.
    利用等边对等角以及三角形内角和定理得出∠B=∠ACB=80°,利用等边对等角得出∠D=∠CED,再结合三角形外角的性质即可求解.
    本题考查了等腰三角形的性质,三角形内角和定理以及外交的性质,掌握等边对等角是解题的关键.
    13.【答案】6
    【解析】解:设正六边形ABCDEF对角线的交点为O,
    ∵正六边形ABCDEF的边长为3,
    ∴AB=EF=3,∠FAB=(6−2)×180°6=120°,
    ∵正六边形ABCDEF是轴对称图形,
    ∴∠FAD=∠BAD=12∠FAB=60°,
    同理:∠ABO=60°,
    ∴∠AOB=60°=∠ABO=∠OAB,
    ∴△ABO是等边三角形,
    ∴BO=AB=3,
    同理:△EFO是等边三角形,
    ∴EO=EF=3,
    ∴BE=BO+EO=6.
    故答案为:6.
    利用多边形内角和公式和正多边形的性质求出∠FAB=120°,利用正多边形的轴对称性求出∠BAO=60°,同理求出∠ABO=60°,可证△ABO是等边三角形,得出BO=AB=3,同理证明△EFO是等边三角形,得出EO=EF=3,即可求解.
    本题考查了正六边形,等边三角形的判定与性质等,证明△ABO、△EFO是等边三角形是解题的关键.
    14.【答案】a>−1且a≠−12
    【解析】解:ax+1x−2=−1,
    解得x=1a+1,
    ∵ax+1x−2=−1的解是正数,
    ∴x>0且x≠2,
    即1a+1>0且1a+1≠2,
    解得a>−1且a≠−12.
    故答案为:a>−1且a≠−12.
    根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得答案.
    本题考查了分式方程的解,先求出分式方程的解,再求出a的取值范围.
    15.【答案】485
    【解析】解:设AC与BD相交于点O,连接OP,
    ∵四边形ABCD是矩形,AB=6,AD=8,
    ∴∠ABC=90°,AO=CO=12AC,BC=AD=8,BO=12BD,AC=BD= 62+82=10,
    ∴S△AOB=12S△ABC=12×6×8=24,AO=BO=5,
    ∵PE⊥AC,PF⊥BD,S△AOB=S△AOP+S△BOP,
    ∴24=12×5PE+12×5PF,
    ∴PE+PF=485.
    故答案为:485.
    连接OP,利用勾股定理求出AC,BD,利用矩形的对角线相等且互相平分以及三角形中线的性质求出△AOB的面积,然后根据S△AOB=S△AOP+S△BOP列方程求解即可.
    本题考查了矩形的性质,勾股定理,三角形中线的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.
    16.【答案】 10+1
    【解析】解:取AC中点Q,连接PQ,OQ,过点Q作QH⊥BC于点H,
    ∵点P是CE的中点,AE=2,
    ∴PQ=12AE=1,
    ∵OQ+PQ≥OP,
    ∴当O、Q、P三点共线,且P在OQ的延长线上时,OP取最大值为OQ+PQ,
    ∵∠BAC=90°,AB=AC=4,
    ∴∠ACB=45°,CQ=12AC=2,BC= AB2+AC2=4 2,
    又QH⊥BC,
    ∴∠HQC=45°=∠QCH,
    ∴QH=CH,
    由勾股定理得CQ2=QH2+CH2,即22=2CH^2,
    ∴CH=QH= 2,
    ∵OC=3OB,BC=BO+CO=4 2,
    ∴CO=3 2,
    ∴OH=OC−HC=2 2,
    ∴OQ= OH2+QH2= 10,
    ∴OQ+PQ= 10+1,
    ∴OP取最大值为 10+1.
    故答案为: 10+1.
    取AC中点Q,连接PQ,OQ,过点Q作QH⊥BC于点H,利用三角形中位线定理可求PQ=1,根据OQ+PQ≥OP判出断当O、Q、P三点共线,且P在OQ的延长线上时,OP取最大值为OQ+PQ,利用等腰三角形的判定和勾股定理可求QH=CH= 2,在Rt△OQH中利用勾股定理可求OQ= 10,即可求解.
    本题考查了旋转的性质,等腰直角三角形的判定与性质,勾股定理等知识,判断出当O、Q、P三点共线,且P在OQ的延长线上时,OP取最大值是解题的关键.
    17.【答案】解:(1)ma2−2ma+m
    =m(a2−2a+1)
    =m(a−1)2;
    (2)9(x−y)2−(x+y)2
    =[3(x−y)]2−(x+y)2
    =[3(x−y)+(x+y)][3(x−y)−(x+y)]
    =(4x−2y)(2x−4y)
    =4(2x−y)(x−2y).
    【解析】(1)首先提取公因式m,再利用完全平方公式分解因式得出答案;
    (2)原式利用平方差公式分解即可.
    本题考查了综合提公因式和公式法分解因式,熟练掌握完全平方公式、平方差公式是解本题的关键.
    18.【答案】解:(1)去分母,得4x−2>3x−1,
    移项,得4x−3x>−1+2,
    合并同类项,得x>1;
    (2)方程两边同乘以x(x−2),得(x−2)2−3x=x(x−2),
    解得x=45,
    检验:当x=45时,x(x−2)=−2425≠0,
    ∴原分式方程的解为:x=45.
    【解析】(1)按照去分母,去括号,移项合并同类项,即可求解;
    (2)先去分母,把分式方程化为整式方程,解出整式方程,然后检验,即可求解.
    本题考查了解一元一次不等式,解分式方程,解分式方程时要验根.掌握不等式的性质是解题的关键.
    19.【答案】解:(mm−2−2mm2−4)÷mm+2
    =[m(m+2)(m+2)(m−2)−2m(m+2)(m−2)]÷mm+2
    =m2(m+2)(m−2)×m+2m
    =mm−2,
    当m= 5时,
    原式=mm−2= 5 5−2=5+2 53.
    【解析】先根据分式的运算法则将原式化简,再把m= 5代入求值即可.
    本题主要考查了分式的化简求值以及分母有理化,熟练掌握分式的混合运算法则,正确对原式进行化简是解题的关键.
    20.【答案】解:如图,点P即为所求,

    理由:由作图知:MN是AB的垂直平分线,
    ∴AP=BP,
    ∴∠PAB=∠B,
    ∵∠ACB=90°,∠CAB=60°,
    ∴∠B=30°,
    ∴∠PAB=30°,
    ∴∠CAP=∠PAB=30°,
    ∴AP=2CP,
    又∵AP=BP,
    ∴BP=2PC.
    【解析】作AB的垂直平分线交BC与点P,连接AP即可.
    本题考查了尺规作图,线段垂直平分线的性质,等腰三角形的性质,含30°的直角三角形的性质等知识,掌握以上知识是解题的关键.
    21.【答案】证明:∵DE=DC,
    ∴∠DEC=∠C,
    ∵∠B=∠C,
    ∴∠B=∠DEC,
    ∴AB//DE,
    ∵AD/​/BC,
    ∴四边形ABED是平行四边形.
    ∴AD=BE.
    【解析】本题主要考查了平行四边形的判定和性质,解题的关键是熟练掌握平行四边形的判定定理和性质定理的运用.
    根据等边对等角的性质求出∠DEC=∠C,在由∠B=∠C得∠DEC=∠B,所以AB//DE,得出四边形ABED是平行四边形,进而得出结论.
    22.【答案】6
    【解析】解:(1)∵点G、F分别是CD、BC边上的中点,
    ∴BD=2GF=6 2,
    ∵△ABD是等腰直角三角形,
    ∴AD=AB,AD2+AB2=BD2,
    ∴2AD2=72,
    解得:AD=6,
    故答案为:6;
    (2)四边形EFGH的形状为矩形,理由如下;
    ∵点E、F、G、H分别是AB、BC、CD、DA边上的中点,
    ∴HE//BD,GF/​/BD,
    ∴HE//GF,
    又∵HE=12BD,GF=12BD,
    ∴HE=GF,
    ∴四边形EFGH为平行四边形,
    连接AC交BD于O,如图,
    由已知,AD=AB,CD=CB,
    ∴AC垂直平分BD,
    ∴AC⊥BD,
    ∵HE//BD,
    ∴AC⊥HE,
    ∵HG//AC,
    ∴HG⊥HE,
    ∴∠GHE=90°
    ∴四边形EFGH是矩形.
    (1)根据三角形中位线求出BD=6 2,再利用等腰直角三角形的性质及勾股定理即可求解;
    (2)先根据条件结合三角形的中位线,证明出四边形EFGH为平行四边形,再添加辅助线证明一个角为直角即可.
    本题考查的是中点四边形,矩形的判定,等边三角形的性质,等腰三角形的性质,线段垂直平分线的判定与性质,三角形的中位线,解题的关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    23.【答案】解:(1)设今年5月份A款汽车每辆售价x万元,则去年同期每辆售价(x+1)万元,
    由题意得:100x+1=90x,
    解得:x=9,
    经检验:x=9是原分式方程的解,且符合题意,
    答:今年5月份A款汽车每辆售价9万元;
    (2)设A款汽车购进y辆,则B款汽车购进(15−y)辆,
    由题意得:7.5y+6(15−y)≤1057.5y+6(15−y)≥99,
    解得:6≤y≤10,
    ∵y为正整数,
    ∴y的值为6、7、8、9、10,
    ∴共有5种进货方案:
    ①A款汽车购进6辆,B款汽车购进9辆,总费用=7.5×6+6×9=99(万元);
    ②A款汽车购进7辆,B款汽车购进8辆,总费用=7.5×7+6×8=100.5(万元);
    ③A款汽车购进8辆,B款汽车购进7辆,总费用=7.5×8+6×7=102(万元);
    ④A款汽车购进9辆,B款汽车购进6辆,总费用=7.5×9+6×6=103.5(万元);
    ⑤A款汽车购进10辆,B款汽车购进5辆,总费用=7.5×10+6×5=105(万元);
    ∵99<100.5<102<103.5<105,
    ∴A款汽车购进6辆,B款汽车购进9辆,使得总费用最少,
    答:A款汽车购进6辆,B款汽车购进9辆,使得总费用最少.
    【解析】(1)设今年5月份A款汽车每辆售价x万元,根据题意可得,去年销售额100万元与今年销售额90万元所卖的车辆数量相等,列出分式方程,解方程即可;
    (2)设A款汽车购进y辆,则B款汽车购进(15−y)辆,根据公司预计用不多于105万元且不少于99万元的资金购进这两款汽车,列出一元一次不等式组,解不等式组,即可解决问题.
    本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式组.
    24.【答案】解:(1)∵OA=2,OB=2 3,∠AOB=90°,
    ∴AB= OA2+OB2= 22+(2 3)2=4,
    ∴AC=2AB=8,
    ∴OC=AC−OA=6,
    ∴点C坐标为(6,0);
    (2)在坐标平面内存在点E,使得以A、B、D、E为顶点的四边形是菱形,理由如下:
    以A、B、D、E为顶点的四边形是菱形,根据AB与BD在菱形中的关系有三种情况:
    I.当四边形ABDE为菱形时,AE/​/BD,AB=BD=AE=4,如图1:

    ∴点E坐标为(−2,4),或(−2,−4);
    II.当四边形AEBD为菱形时,AE/​/BD,AD=BD=AE,如图2:

    ∵OA2+OD2=AD2,
    ∴22+(2 3−BD)2=BD2,
    解得:BD=43 3,
    ∴点E坐标为(−2,43 3);
    III.当四边形ABED为菱形时,AB=BE=ED=AD,如图3:

    ∴点E是点A关于BD的对称点,
    ∴点E坐标为(2,0),
    综上所述:在坐标平面内存在点E,使得以A、B、D、E为顶点的四边形是菱形,E坐标为(−2,4),或(−2,−4)或(−2,43 3)或(2,0).
    【解析】(1)由勾股定理可计算AB=4,进而可得AC=2AB=8,由此即可解题;
    (2)分三种情况讨论,分别画出草图,然后求解即可.
    本题是一次函数综合题,考查勾股定理、菱形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.
    25.【答案】 3 76
    【解析】解:(1)如图1,
    ∵CD平分△ABC的面积,
    ∴AD=BD,
    ∵△ABC为边长为2的等边三角形,
    ∴AC=AB=2,
    ∴AD=1,
    ∴CD= AC2−AD2= 3;
    (2)取AC中点O,连接MO并延长交BC于点N,过A作AG⊥BC于点G,过M作MH⊥BC于点H,如图2,
    ∵∠B=60°,
    ∴∠BAG=30°,
    ∴BG=12AB=3,
    ∴AG= AB2−BG2=3 3,
    ∵MN平分四边形ABCD的面积,
    ∴MN经过平分四边形ABCD的中心O,
    ∵平行四边形ABCD中,AB=6,BC=8,
    ∴AD=BC,AD//BC,
    ∴∠AMO=∠CNO,∠MAO=∠NCO,
    又∵AO=CO,
    ∴△AOM≌△CON(AAS),
    ∴AM=CN,
    又∵AM=6,
    ∴CN=6,
    又∵BC=8,
    ∴BN=2,
    ∵AG⊥BC,MH⊥BC,
    ∴AG//MH,
    又∵AM//GH,
    ∴四边形AGHM是平行四边形,
    ∴GH=AM=6,MH=AG=3 3,
    ∴NH=BG+GH−BN=7,
    ∴MN= NH2+MH2= 76;
    (3)连接AC,CE,过D作DH⊥AB于H,设DE交AC于点O,如图3,
    ∵∠ABC=90°,AB=320,BC=240,
    ∴AC= AB2+BC2=400,
    ∵DA=DC=100 5,∠ADE=∠CDE,
    ∴DO⊥AC,AO=CO=12AC=200米,
    ∴DO= AD2−AO2=100米,
    ∴S四边形ABCD=S△ABC+S△DBC
    =12×320×240+12×400×100
    =58400(平方米),
    ∵DF平分四边形ABCD的面积,
    ∴S△ADF=12S四边形ABCD=29200(平方米),
    ∵AD=CD,∠ADE=∠CDE,DE=DE,
    ∴△ADE≌△CDE(SAS),
    ∴AE=CE,
    设AE=x米,则CE=x米,BE=(320−x)米,
    在Rt△CBE中,CE2=BE2+BC2,
    ∴x2=(320−x)2+2402,
    解得x=250,即AE=250米,
    ∴OE= AE2−AO2=150米,
    ∴S△ADE=12AE⋅DH=12DE⋅AO,即12×250DH=12×(100+150)×200,
    ∴DH=200米,
    ∵S△ADF=12AF⋅DH=29200(平方米),
    ∴AF=292米,
    ∴EF=292−250=42米,
    ∴当F在BE上,且EF=42米时,DF平分该空地的面积.
    (1)先判断CD是中线,然后利用等腰三角形的性质和勾股定理求解即可;
    (2)取AC中点O,连接MO并长交BC于点N,过A作AG⊥BC于点G,过M作MH⊥BC于点H,
    利用含30°的直角三角形性质求出BG=3,利用勾股定理求出AG=3 3,证明△AOM≌△CON可求CN=AM=6,BN=2,证明四边形AGHM是平行四边形,可求MH=3 3,NH=7,然后利用勾股定理求解即可;
    (3)连接AC,CE,过D作DH⊥AB于H,设DE交AC于点O,利用勾股定理求出AC=400,利用三线合一的性质求出AO=CO=200,DE⊥AC,利用勾股定理求出DO=100,则可求S四边形ABCD=S△ABC+S△DBC=58400,S△ADF=12S四边形ABCD=29200,证明△ADE≌△CDE,得出AE=CE,设AE=x,则CE=x,BE=320−x,在Rt△CBE利用勾股定理求出AE=x=250,利用勾股定理求出OE=150,在△ADE中利用等面积法求出DH=200,最后根据三角形面积公式求出AF=292,即可求解.
    本题属于四边形综合题,考查了等腰三角形的性质,等边三角形的性质,平行四边形的性质,全等三角形的判定与性质,勾股定理等知识,明确题意,添加合适的辅助线,构造直角三角形求解是解题的关键.
    相关试卷

    2022-2023学年陕西省西安市碑林区铁一中学八年级(下)月考数学试卷(3月份)(含解析): 这是一份2022-2023学年陕西省西安市碑林区铁一中学八年级(下)月考数学试卷(3月份)(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年陕西省西安市碑林区铁一中学八年级(上)第一次月考数学试卷(含解析): 这是一份2023-2024学年陕西省西安市碑林区铁一中学八年级(上)第一次月考数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年陕西省西安市碑林区铁一中学八年级(下)期末数学试卷(含解析): 这是一份2022-2023学年陕西省西安市碑林区铁一中学八年级(下)期末数学试卷(含解析),共19页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map