终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题12 圆综合篇-备考2024年中考数学考点总结+题型专训(全国通用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题12 圆综合篇(原卷版).docx
    • 解析
      专题12 圆综合篇(解析版).docx
    专题12 圆综合篇(原卷版)第1页
    专题12 圆综合篇(原卷版)第2页
    专题12 圆综合篇(原卷版)第3页
    专题12 圆综合篇(解析版)第1页
    专题12 圆综合篇(解析版)第2页
    专题12 圆综合篇(解析版)第3页
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题12 圆综合篇-备考2024年中考数学考点总结+题型专训(全国通用)

    展开

    这是一份专题12 圆综合篇-备考2024年中考数学考点总结+题型专训(全国通用),文件包含专题12圆综合篇原卷版docx、专题12圆综合篇解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    垂径定理:
    垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
    垂径定理的推论:
    推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
    推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
    推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
    垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题。
    圆心角、弦以及弧之间的关系:
    ①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
    ②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
    说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。
    圆周角定理:
    在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
    圆周角定理的推论:
    半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
    圆的内接四边形:
    ①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。
    ②性质: = 1 \* ROMAN \* MERGEFORMAT I:圆内接四边形的对角互补。
    = 2 \* ROMAN \* MERGEFORMAT II:圆内接四边形的任意一个外角等于它的内对角。
    三角形的外接圆与外心:
    经过三角形的三个顶点的圆,叫做三角形的外接圆。圆心是三角形三条边垂直平分线的交点,叫
    做三角形的外心。
    切线的性质:
    ①圆的切线垂直于经过切点的半径。
    ②经过圆心且垂直于切线的直线必经过切点。
    ③经过切点且垂直于切线的直线必经过圆心。
    运用切线的性质进行计算或证明时,常常作的辅助线是连接圆心和切点,通过构造直角三角形或相似三角形解决问题。
    切线的判定:
    经过半径的外端且垂直于这条半径的直线是圆的切线。
    在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”。
    相交弦定理:
    圆内的两条相交弦,被交点分成的两条线段长的积相等。
    几何语言:若弦交于点,则。
    推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
    几何语言:若是直径,垂直于点,则。
    弦切角定理:
    (1)弦切角的定义:如图像∠ACP这样,顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
    (2)弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半。等于这条弧所对的圆周角。即∠PCA=∠PBC。
    12. 切线长定理:
    (1)切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。
    (2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角。
    13. 切割线定理:
    从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
    几何语言:
    ∵PT切⊙O于点T,PBA是⊙O的割线
    ∴PT2=PA•PB(切割线定理)。
    推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
    几何语言:
    ∵PBA,PDC是⊙O的割线
    ∴PD•PC=PA•PB
    由上可知:PT2=PA•PB=PC•PD。
    三角形的内切圆与内心:
    内切圆与内心的概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。三角形的内心就是三角形三个内角角平分线的交点。
    弧长计算公式:
    (弧长为,圆心角度数为,圆的半径为)
    扇形的面积计算公式:
    或(其中为扇形的弧长)。
    求阴影部分的常用方法:
    ①直接用公式法;
    ②和差法;
    ③割补法.
    专题练习
    1.如图,△ABC内接于⊙O,AD∥BC交⊙O于点D,DF∥AB交BC于点E,交⊙O于点F,连接AF,CF.
    (1)求证:AC=AF;
    (2)若⊙O的半径为3,∠CAF=30°,求 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),AC)的长(结果保留π).
    2.如图①,矩形ABCD与以EF为直径的半圆O在直线l的上方,线段AB与点E、F都在直线l上,且AB=7,EF=10,BC>5.点B以1个单位/秒的速度从点E处出发,沿射线EF方向运动,矩形ABCD随之运动,运动时间为t秒.
    (1)如图②,当t=2.5时,求半圆O在矩形ABCD内的弧的长度;
    (2)在点B运动的过程中,当AD、BC都与半圆O相交时,设这两个交点为G、H.连接OG、OH,若∠GOH为直角,求此时t的值.
    3.石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),AB).桥的跨度(弧所对的弦长)AB=26m,设 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),AB)所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.
    (1)直接判断AD与BD的数量关系;
    (2)求这座石拱桥主桥拱的半径(精确到1m).
    4.如图,四边形ABCD内接于⊙O,BD为⊙O的直径,AC平分∠BAD,CD=2,点E在BC的延长线上,连接DE.
    (1)求直径BD的长;
    (2)若BE=5,计算图中阴影部分的面积.
    5.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交线段CA的延长线于点E,连接BE.
    (1)求证:BD=CD;
    (2)若tan C=,BD=4,求AE.
    6.如图,以AB为直径的⊙O经过△ABC的顶点C,AE,BE分别平分∠BAC和∠ABC,AE的延长线交⊙O于点D,连接BD.
    (1)判断△BDE的形状,并证明你的结论;
    (2)若AB=10,BE=2,求BC的长.
    7.如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.
    (1)若AB=AC,求证:∠ADB=∠ADE;
    (2)若BC=3,⊙O的半径为2,求sin∠BAC.
    8.如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE交BD于点F,延长CE交⊙O于点G,连接BG.
    (1)求证:FB2=FE•FG;
    (2)若AB=6,求FB和EG的长.
    9.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.
    (1)试判断△ABC的形状,并给出证明;
    (2)若AB=,AD=1,求CD的长度.
    10.如图,在Rt△ABC中,∠ACB=90°,O是BC边上一点,以O为圆心,OB为半径的圆与AB相交于点D,连接CD,且CD=AC.
    (1)求证:CD是⊙O的切线;
    (2)若∠A=60°,AC=2,求 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),BD)的长.
    11.如图,在⊙O中,AB为⊙O的直径,点E在⊙O上,D为 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),BE)的中点,连接AE,BD并延长交于点C.连接OD,在OD的延长线上取一点F,连接BF,使∠CBF=∠BAC.
    (1)求证:BF为⊙O的切线;
    (2)若AE=4,OF=,求⊙O的半径.
    12.如图1,在等腰三角形ABC中,AB=AC,O为底边BC的中点,过点O作OD⊥AB,垂足为D,以点O为圆心,OD为半径作圆,交BC于点M,N.
    (1)AB与⊙O的位置关系为 ;
    (2)求证:AC是⊙O的切线;
    (3)如图2,连接DM,DM=4,∠A=96°,求⊙O的直径.(结果保留小数点后一位.参考数据:sin24°≈0.41,cs24°≈0.91,tan24°≈0.45)
    13.已知△ABC是⊙O的内接三角形,∠BAC的平分线与⊙O相交于点D,连接DB.
    (1)如图①,设∠ABC的平分线与AD相交于点I,求证:BD=DI;
    (2)如图②,过点D作直线DE∥BC,求证:DE是⊙O的切线;
    (3)如图③,设弦BD,AC延长后交⊙O外一点F,过F作AD的平行线交BC的延长线于点G,过G作⊙O的切线GH(切点为H),求证:FG=HG.
    14.如图CD是⊙O直径,A是⊙O上异于C,D的一点,点B是DC延长线上一点,连AB、AC、AD,且∠BAC=∠ADB.
    (1)求证:直线AB是⊙O的切线;
    (2)若BC=2OC,求tan∠ADB的值;
    (3)在(2)的条件下,作∠CAD的平分线AP交⊙O于P,交CD于E,连PC、PD,若AB=2,求AE•AP的值.
    15.如图,已知AB是⊙O的直径,点E是⊙O上异于A,B的点,点F是 EQ \* jc2 \* "Fnt:Times New Rman" \* hps18 \ \ad(\s \up 9(⌒),EB)的中点,连接AE,AF,BF,过点F作FC⊥AE交AE的延长线于点C,交AB的延长线于点D,∠ADC的平分线DG交AF于点G,交FB于点H.
    (1)求证:CD是⊙O的切线;
    (2)求sin∠FHG的值;
    (3)若GH=4,HB=2,求⊙O的直径.

    相关试卷

    专题13 尺规作图篇-备考2024年中考数学考点总结+题型专训(全国通用):

    这是一份专题13 尺规作图篇-备考2024年中考数学考点总结+题型专训(全国通用),文件包含专题13尺规作图篇原卷版docx、专题13尺规作图篇解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    专题12 平面直角坐标系篇-备考2024年中考数学考点总结+题型专训(全国通用):

    这是一份专题12 平面直角坐标系篇-备考2024年中考数学考点总结+题型专训(全国通用),文件包含专题12平面直角坐标系篇原卷版docx、专题12平面直角坐标系篇解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。

    专题10 相似综合篇-备考2024年中考数学考点总结+题型专训(全国通用):

    这是一份专题10 相似综合篇-备考2024年中考数学考点总结+题型专训(全国通用),文件包含专题10相似综合篇原卷版docx、专题10相似综合篇解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map