所属成套资源:2024年中考数学专题训练【专题训练+能力提升】(原卷版+解析)
2024年中考数学专题训练 专题05 对角互补模型综合应用(能力提升)(原卷版+解析)
展开
这是一份2024年中考数学专题训练 专题05 对角互补模型综合应用(能力提升)(原卷版+解析),共21页。试卷主要包含了如图,方法感悟,阅读理解等内容,欢迎下载使用。
1.如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD,求证:EF=BE+FD.
2.如图.在四边形ABCD中,∠B+∠ADC=180°,AB=AD,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,求证:EF=BE﹣FD.
3.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD.
(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出线段EF、BE、FD它们之间的数量关系,并证明.
(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出线段EF、BE、FD它们之间的数量关系,并证明.
4.(1)如图1,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45°.直接写出BE、DF、EF之间的数量关系;
(2)如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF=∠BAD,求证:EF=BE+DF;
(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,延长BC到点E,延长CD到点F,使得∠EAF=∠BAD,则结论EF=BE+DF是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并证明.
5.(1)方法感悟:
如图①,在正方形ABCD中,点E、F分别为DC、BC边上的点,且满足∠EAF=45°,连接EF.将△ADE绕点A顺时针旋转90°得到△ABG,易证△GAF≌△EAF,从而得到结论:DE+BF=EF.根据这个结论,若CD=6,DE=2,求EF的长.
(2)方法迁移:
如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF=∠BAD,试猜想DE,BF,EF之间有何数量关系,证明你的结论.
(3)问题拓展:如图③,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,试探究线段EF、BE、FD之间的数量关系,请直接写出你的猜想(不必说明理由).
6.(1)阅读理解:
如图①,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:
延长AD到点E使DE=AD,再连接BE,这样就把AB,AC,2AD集中在△ABE中,利用三角形三边的关系可判断线段AE的取值范围是 ;则中线AD的取值范围是 ;
(2)问题解决:
如图②,在△ABC中,D是BC边的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,此时:BE+CF EF(填“>”或“=”或“<”);
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180,CB=CD,∠BCD=140°,以C为顶点作∠ECF=70°,边CE,CF分别交AB,AD于E,F两点,连接EF,此时:BE+DF EF(填“>”或“=”或“<“);
(4)若在图③的四边形ABCD中,∠ECF=α(0°<α<90°),∠B+∠D=180,CB=CD,且(3)中的结论仍然成立,则∠BCD= (用含α的代数式表示).
7.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一长边相等,从而解决问题.
(1)如图 1,△ABC是等边三角形,点D是边BC下方一点,连结DA、DB、DC,且∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+BDC=180°,则∠ABD+∠ACD=180°,因为∠ACD+∠ACE=180°可证∠ABD=∠ACE,易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是 ;
【拓展延伸】
(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;
【知识应用】
(3)如图3,两块斜边长都为2cm的三角板,把斜边重叠摆放在一起,已知30°所对直角边等于斜边一半,则PQ的长为 cm.(结果无需化简)
8.如图,点P(3m﹣1,﹣2m+4)在第一象限的角平分线OC上,AP⊥BP,点A在x轴正半轴上,点B在y轴正半轴上.
(1)求点P的坐标.
(2)当∠APB绕点P旋转时,
①OA+OB的值是否发生变化?若变化,求出其变化范围;若不变,求出这个定值.
②请求出OA2+OB2的最小值.
专题05 对角互补模型综合应用(能力提升)
1.如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD,求证:EF=BE+FD.
【解答】证明:延长CB至M,使BM=FD,连接AM,如图所示:
∵∠ABC+∠D=180°,∠ABM+∠ABC=180°,
∴∠ABM=∠D,
在△ABM与△ADF中,
,
∴△ABM≌△ADF(SAS),
∴AF=AM,∠BAM=∠DAF,
∵∠EAF=∠BAD,
∴∠DAF+∠BAE=∠BAD=∠FAE,
∴∠BAM+∠BAE=∠EAF,
即∠MAE=∠EAF,
在△AME与△AFE中,
,
∴△AME≌△AFE(SAS),
∴EF=ME,
∵ME=BE+BM,
∴EF=BE+FD.
2.如图.在四边形ABCD中,∠B+∠ADC=180°,AB=AD,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,求证:EF=BE﹣FD.
【解答】证明:在BE上截取BG,使BG=DF,连接AG.
∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,
∴∠B=∠ADF.
在△ABG和△ADF中,
,
∴△ABG≌△ADF(SAS),
∴∠BAG=∠DAF,AG=AF.
∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.
∴∠GAE=∠EAF.
在△AEG和△AEF中,
,
∴△AEG≌△AEF(SAS).
∴EG=EF,
∵EG=BE﹣BG
∴EF=BE﹣FD.
3.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD.
(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出线段EF、BE、FD它们之间的数量关系,并证明.
(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出线段EF、BE、FD它们之间的数量关系,并证明.
【解答】证明:(1)如图1,延长EB到G,使BG=DF,连接AG.
∵在△ABG与△ADF中,,
∴△ABG≌△ADF(SAS).
∴AG=AF,∠1=∠2.
∴∠1+∠3=∠2+∠3=∠EAF=∠BAD.
∴∠GAE=∠EAF.
又AE=AE,
易证△AEG≌△AEF.
∴EG=EF.
∵EG=BE+BG.
∴EF=BE+FD
(2)(1)中的结论EF=BE+FD仍然成立.
证明:如图2,延长CB至M,使BM=DF,
∵∠ABC+∠D=180°,∠1+∠ABC=180°,
∴∠1=∠D,
在△ABM与△ADF中,
,
∴△ABM≌△ADF(SAS).
∴AF=AM,∠2=∠3.
∵∠EAF=∠BAD,
∴∠2+∠4=∠BAD=∠EAF.
∴∠3+∠4=∠EAF,即∠MAE=∠EAF.
在△AME与△AFE中,
,
∴△AME≌△AFE(SAS).
∴EF=ME,即EF=BE+BM.
∴EF=BE+DF.
(3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.
证明:在BE上截取BG,使BG=DF,连接AG.
∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,
∴∠B=∠ADF.
∵在△ABG与△ADF中,
,
∴△ABG≌△ADF(SAS).
∴∠BAG=∠DAF,AG=AF.
∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.
∴∠GAE=∠EAF.
∵AE=AE,
易证△AEG≌△AEF.
∴EG=EF
∵EG=BE﹣BG
∴EF=BE﹣FD.
4.(1)如图1,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45°.直接写出BE、DF、EF之间的数量关系;
(2)如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF=∠BAD,求证:EF=BE+DF;
(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,延长BC到点E,延长CD到点F,使得∠EAF=∠BAD,则结论EF=BE+DF是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并证明.
【解答】解:(1)EF=BE+DF;
如图1,将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF′,
∵∠EAF=45°,
∴∠EAF′=∠EAF=45°,
在△AEF和△AEF′中,
,
∴△AEF≌△AEF′(SAS),
∴EF=EF′,
又EF′=BE+BF′=BE+DF,
∴EF=BE+DF;
(2)延长CB到G,使BG=FD,连接AG,
∵∠ABG=∠D=90°,AB=AD,
∴△ABG≌△ADF(SAS),
∴∠BAG=∠DAF,AG=AF,
∵∠EAF=∠BAD,
∴∠DAF+∠BAE=∠EAF,
∴∠EAF=∠GAE,
∴△AEF≌△AEG(SAS),
∴EF=EG=EB+BG=EB+DF.
(3)结论不成立,应为EF=BE﹣DF,
证明:在BE上截取BG,使BG=DF,连接AG.
∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,
∴∠B=∠ADF.
∵AB=AD,
∴△ABG≌△ADF(SAS).
∴∠BAG=∠DAF,AG=AF.
∴∠BAG+∠EAD=∠DAF+∠EAD
=∠EAF=∠BAD.
∴∠GAE=∠EAF.
∵AE=AE,
∴△AEG≌△AEF(SAS).
∴EG=EF
∵EG=BE﹣BG
∴EF=BE﹣FD.
5.(1)方法感悟:
如图①,在正方形ABCD中,点E、F分别为DC、BC边上的点,且满足∠EAF=45°,连接EF.将△ADE绕点A顺时针旋转90°得到△ABG,易证△GAF≌△EAF,从而得到结论:DE+BF=EF.根据这个结论,若CD=6,DE=2,求EF的长.
(2)方法迁移:
如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF=∠BAD,试猜想DE,BF,EF之间有何数量关系,证明你的结论.
(3)问题拓展:如图③,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,试探究线段EF、BE、FD之间的数量关系,请直接写出你的猜想(不必说明理由).
【解答】解:(1)方法感悟:
∵将△ADE绕点A顺时针旋转90°得到△ABG,
∴GB=DE=2,
∵△GAF≌△EAF
∴GF=EF,
∵CD=6,DE=2
∴CE=4,
∵EF2=CF2+CE2,
∴EF2=(8﹣EF)2+16,
∴EF=5;
(2)方法迁移:
DE+BF=EF,
理由如下:如图②,将△ADE绕点A顺时针旋转角度为∠BAD的度数,得到△ABH,
由旋转可得,AH=AE,BH=DE,∠1=∠2,∠D=∠ABH,
∵∠EAF=∠DAB,
∴∠HAF=∠1+∠3=∠2+∠3=∠BAD,
∴∠HAF=∠EAF,
∵∠ABH+∠ABF=∠D+∠ABF=180°,
∴点H、B、F三点共线,
在△AEF和△AHF中,
∴△AEF≌△AHF(SAS),
∴EF=HF,
∵HF=BH+BF,
∴EF=DE+BF.
(3)问题拓展:
EF=BE﹣FD,
理由如下:在BC上截取BH=DF,
∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,
∴∠B=∠ADF,且AB=AD,BH=DF,
∴△ABH≌△ADF(SAS)
∴∠BAH=∠DAF,AH=AF,
∵∠EAF=∠BAD,
∴∠DAE+∠BAH=∠BAD,
∴∠HAE=∠BAD=∠EAF,且AE=AE,AH=AF,
∴△HAE≌△FAE(SAS)
∴HE=EF,
∴EF=HE=BE﹣BH=BE﹣DF.
6.(1)阅读理解:
如图①,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:
延长AD到点E使DE=AD,再连接BE,这样就把AB,AC,2AD集中在△ABE中,利用三角形三边的关系可判断线段AE的取值范围是 ;则中线AD的取值范围是 ;
(2)问题解决:
如图②,在△ABC中,D是BC边的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,此时:BE+CF EF(填“>”或“=”或“<”);
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180,CB=CD,∠BCD=140°,以C为顶点作∠ECF=70°,边CE,CF分别交AB,AD于E,F两点,连接EF,此时:BE+DF EF(填“>”或“=”或“<“);
(4)若在图③的四边形ABCD中,∠ECF=α(0°<α<90°),∠B+∠D=180,CB=CD,且(3)中的结论仍然成立,则∠BCD= (用含α的代数式表示).
【解答】解:(1)在△ADC与△EDB中,
,
∴△ADC≌△EDB(SAS),
∴BE=AC=3,
在△ABE中,AB﹣BE<AE<AB+BE,
即2<AE<8,
∴2<2AD<8,
∴1<AD<4,
故答案为:2<AE<8;1<AD<4;
(2)如图,延长FD至点G,使DG=DF,连接BG,EG,
∵点D是BC的中点,
∴DB=DC,
∵∠BDG=∠CDF,DG=DF,
∴△BDG≌△CDF(SAS),
∴BG=CF,
∵ED⊥FD,FD=GD,
∴EF=EG,
在△BEG中,BE+BG>EG,
∴BE+CF>EF,
故答案为:>;
(3)BE+DF=EF,
如图,延长AB至点G,使BG=DF,连接CG,
∵∠ABC+∠D=180°,∠ABC+∠CBG=180°,
∴∠CBG=∠D,
又∵CB=CD,BG=DF,
∴△CBG≌△CDF(SAS),
∴CG=CF,∠BCG=∠DCF,
∵∠BCD=140°,∠ECF=70°,
∴∠DCF+∠BCE=70°,
∴∠BCE+∠BCG=70°,
∴∠ECG=∠ECF=70°,
又∵CE=CE,CG=CF,
∴△ECG≌△ECF(SAS),
∴EG=EF,
∵BE+BG=EG,
∴BE+DF=EF,
故答案为:=;
(4)由(3)同理可得△CBG≌△CDF,
∴CG=CF,∠BCG=∠DCF,
若BE+DF=EF,
则EG=EF,
∴△ECF≌△ECG(SSS),
∴∠ECG=∠ECF,
∴∠BCD=2∠ECF=2α,
故答案为:2α.
7.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一长边相等,从而解决问题.
(1)如图 1,△ABC是等边三角形,点D是边BC下方一点,连结DA、DB、DC,且∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+BDC=180°,则∠ABD+∠ACD=180°,因为∠ACD+∠ACE=180°可证∠ABD=∠ACE,易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是 ;
【拓展延伸】
(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;
【知识应用】
(3)如图3,两块斜边长都为2cm的三角板,把斜边重叠摆放在一起,已知30°所对直角边等于斜边一半,则PQ的长为 cm.(结果无需化简)
【解答】解:(1)如图1,延长DC到点E,使CE=BD,连接AE,
∵△ABC是等边三角形,
∴AB=AC,∠BAC=60°,
∵∠BDC=120°,
∴∠BAC+BDC=180°,
∴∠ABD+∠ACD=180°,
∵∠ACD+∠ACE=180°,
∴∠ABD=∠ACE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴AD=AE,∠BAD=∠CAE,
∴∠DAE=∠BAC=60°,
∴△ADE是等边三角形,
∴AD=DE,
∴DA=DE=DC+CE=DB+DC;
故答案为:DA=DB+DC;
(2)DA=DB+DC,
理由如下:延长DC到点E,使CE=BD,连接AE,
∵∠BAC=90°,∠BDC=90°,
∴∠ABD+∠ACD=180°,
∵∠ACE+∠ACD=180°,
∴∠ABD=∠ACE,
∵AB=AC,CE=BD,
∴△ABD≌△ACE(SAS),
∴AD=AE,∠BAD=∠CAE,
∴∠DAE=∠BAC=90°,
∴DA2+AE2=DE2,
∴2DA2=(DB+DC)2,
∴DA=DB+DC;
(3)如图3,连接PQ,
∵MN=2cm,∠QMN=30°,
∴QN=MN=1cm,
∴MQ==(cm),
由(2)可得:PQ=QM+QN,
解得:PQ=cm,
故答案为:.
8.如图,点P(3m﹣1,﹣2m+4)在第一象限的角平分线OC上,AP⊥BP,点A在x轴正半轴上,点B在y轴正半轴上.
(1)求点P的坐标.
(2)当∠APB绕点P旋转时,
①OA+OB的值是否发生变化?若变化,求出其变化范围;若不变,求出这个定值.
②请求出OA2+OB2的最小值.
【解答】解:(1)∵点P(3m﹣1,﹣2m+4)在第一象限的角平分线OC上,
∴3m﹣1=﹣2m+4,
∴m=1,
∴P(2,2);
(2)①不变.
过点P作PM⊥y轴于M,PN⊥OA于N.
∵∠PMO=∠PNO=∠MON=90°,PM=PN=2,
∴四边形QMPN是正方形,
∴∠MPN=90°=∠APB,
∴∠MPB=∠NPA.
在△PMB和△PNA中,
,
∴△PMB≌△PNA(ASA),
∴BM=AN,
∴OB+OA=OM﹣BM+ON+AN=2OM=4,
②连接AB,
∵∠AOB=90°,
∴OA2+OB2=AB2,
∵∠BPA=90°,
∴AB2=PA2+PB2=2PA2,
∴OA2+OB2=2PA2,当PA最小时,OA2+OB2也最小.
根据垂线段最短原理,PA最小值为2,
∴OA2+OB2的最小值为8.
相关试卷
这是一份2024年中考数学专题训练 专题05 对角互补模型综合应用(知识解读),共27页。
这是一份2024年中考数学专题训练 专题05 对角互补模型综合应用(专项训练)(原卷版+解析),共14页。试卷主要包含了问题背景等内容,欢迎下载使用。
这是一份专题05 对角互补模型综合应用(能力提升)-备战中考数学《重难点解读•专项训练》(全国通用),文件包含专题05对角互补模型综合应用能力提升解析版docx、专题05对角互补模型综合应用能力提升原卷版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。