河南省平顶山市叶县2023-2024学年八年级上学期期末数学试题
展开
这是一份河南省平顶山市叶县2023-2024学年八年级上学期期末数学试题,共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
一、单选题
1.下列各数中,为有理数的是( )
A.B.C.D.
2.甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环)及方差(单位:环2)如下表所示:
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )
A.甲B.乙C.丙D.丁
3.剪纸艺术是最古老的中国民间艺术之一,很多剪纸作品体现了数学中的对称美如图,蝴蝶剪纸是一幅轴对称图形,将其放在平面直角坐标系中,如果图中点的坐标为,其关于轴对称的点的坐标,则的值为 ( )
A.1B.C.D.
4.下列说法中,正确的是 ( )
①的立方根是 ; ②的平方根是;③立方根是;④算术平方根.
A.1个B.2个C.3个D.4个
5.下列命题中,假命题是( )
A.对顶角相等
B.等角的补角相等
C.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行
D.如果一个角的两边分别平行于另一个角的两边,那么这两个角相等
6.如图,在四边形中,,分别以四边形的四条边为边向外作四个正方形,面积依次为,,,,下列结论正确的是( )
A.B.
C.D.
7.如图,在中,平分,平分,,则( )
A.B.C.D.
8.在平面直角坐标系中画出一次函数的图象,下列说法正确的是( )
A.函数图象经过一、二、三象限的一条直线
B.函数y的值随x值的增大而减小
C.图象与x轴的交点坐标是
D.图象与坐标轴围成的三角形面积是
9.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A.
B.
C.
D.
10.甲乙两人骑自行车分别从,两地同时出发相向而行,甲匀速骑行到地,乙匀速骑行到地,甲的速度大于乙的速度,两人分别到达目的地后停止骑行.两人之间的距离米和骑行的时间秒之间的函数关系图象如图所示,现给出下列结论:①;②;③甲的速度为米秒;④当甲、乙相距米时,甲出发了秒或秒.其中正确的结论有( )
A.①②B.①③C.②④D.③④
二、填空题
11.写出一个比大且比小的整数 .
12.将命题“同角的余角相等”改写成“如果……,那么……”的形式: .
13.一次函数和的图像上一部分点的坐标见下表,则方程组的解为 .
14.如图,正方形,边在轴的正半轴上,顶点,在直线上,如果正方形边长是1,那么点的坐标是 .
15.如图,在中,,于点D.为线段上一点,连接,将边沿折叠,使点的对称点落在的延长线上.若,,则的面积为 .
三、解答题
16.计算或证明
(1)
(2)
(3)
(4)请你完成定理“两直线平行,同旁内角互补”的证明.
17.解下列方程组:
(1)
(2)
18.为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按的比例计算出每人的总评成绩.
小悦、小涵的三项测试成绩和总评成绩如下表,这20名学生的总评成绩频数直方图(每组含最小值,不含最大值)如下图
(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,68,69,74,69,71.这组数据的中位数是__________分,众数是__________分,平均数是__________分;
(2)请你计算小涵的总评成绩;
(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.
19.如图,点D、E、F、G在△ABC的边上,且,∠1+∠2=180°.
(1)求证:;
(2)若BF平分∠ABC,∠2=138°,求∠AGF的度数.
20.第19届亚运会将于2023年9月23日至10月8日在杭州举行.某玩具店购进亚运会吉祥物“琮琮”、“莲莲”共100个,总费用为6600元,这两种吉祥物的进价、售价如表:
(1)该玩具店购进“琮琮”和“莲莲”各多少个?
(2)后来该玩具店以60元/个的价格购进50个吉祥物“宸宸”,并以90元/个的价格售出,这家店将销售完这150个吉祥物所得利润的捐赠给“希望工程”,求该玩具店捐赠了多少钱?
21.如图,在中,,,边上的中线,延长到点,使,连接.
(1)求证:;
(2)求的长.
22.我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.
(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?
(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?
23.请阅读下列材料,并完成相应任务.
在数学探究课上,老师出了这样一个题:如图,锐角内部有一点,在其两边和上各取任意一点,,连接,,求证:.
任务:
(1)小丽证明过程中的“依据”是指数学定理:______;
(2)下列说法正确的是______.
A.小丽的证法用严谨的推理证明了本题结论
B.小丽的证法还需要改变的大小,再进行证明,本题的证明才完整
C.小红的证法用特殊到一般的方法证明了本题结论
D.小红的证法只要将点在的内部任意移动次,重新测量进行验证,就能证明本题结论
(3)如图,若点在锐角外部,与相交于点,其余条件不变,原题中结论还成立吗?若成立,请说明理由;若不成立,请写出,,,之间的关系并证明.
甲
乙
丙
丁
9
8
9
9
1.2
0.4
1.8
0.4
2
1
0
0
3
6
9
6
3
0
选手
测试成绩/分
总评成绩/分
采访
写作
摄影
小悦
83
72
80
78
小涵
86
84
▲
▲
琮琮
莲莲
进价(元/个)
60
70
售价(元/个)
80
100
x(厘米)
1
2
4
7
11
12
y(斤)
0.75
1.00
1.50
2.75
3.25
3.50
小丽的证法
小红的证法
证明:
如图,连接并延长至点,,(依据),
又∵,,
∴.
证明:
∵,,,(量角器测量所得),
∴,(计算所得).
∴(等量代换).
参考答案:
1.A
【分析】根据立方根、无理数与有理数的概念即可得.
【详解】解:A、,是有理数,则此项符合题意;
B、是无限不循环小数,是无理数,则此项不符合题意;
C、是无理数,则此项不符合题意;
D、是无理数,则此项不符合题意;
故选:A.
【点睛】本题考查了立方根、无理数与有理数,熟记无理数与有理数的概念是解题关键.
2.D
【分析】根据10次射击成绩的平均数可知淘汰乙;再由10次射击成绩的方差可知,也就是丁的射击成绩比较稳定,从而得到答案.
【详解】解:,
由四人的10次射击成绩的平均数可知淘汰乙;
,
由四人的10次射击成绩的方差可知丁的射击成绩比较稳定;
故选:D.
【点睛】本题考查通过统计数据做决策,熟记平均数与方差的定义与作用是解决问题的关键.
3.A
【分析】本题考查坐标与图形变化对称.利用轴对称的性质,求出,,可得结论.
【详解】解:,关于轴对称,
,,
,
故选:A.
4.B
【分析】本题考查求一个数的平方根,算术平方根,立方根,根据平方根,算术平方根,立方根的定义,逐一进行计算,判断即可.
【详解】解:的立方根是;故①正确;
的平方根是;故②错误;
立方根是;故③错误;
算术平方根;故④正确;
故选B.
5.D
【分析】分别判断后,找到错误的命题就是假命题.
【详解】A、对顶角相等,正确,是真命题;
B、等角的补角相等,正确,是真命题;
C、两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,正确,是真命题;
D、如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故错误,是假命题.
故选D.
【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、平行线的性质等知识,难度不大.
6.B
【分析】利用勾股定理,分别得出同一直角三角形的两直角边上的两个正方形面积和都是,即可得到答案.
【详解】解:如图,连接,
根据勾股定理,得,
∴,
,
故选:B.
【点睛】本题考查了勾股定理的应用,关键是发现两个直角三角形的斜边是公共边.
7.A
【分析】先根据三角形的内角和求出的度数,再根据角平分线的定义得出,,进而求出的度数,最后再根据三角形内角和定理即可求得答案.
【详解】解:,
,
平分,平分,
,,
,
.
故选:A.
【点睛】本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于.
8.D
【分析】根据,可得函数图象经过一、三、四象限的一条直线,且函数y的值随x值的增大而增大,再由,可得图象与x轴的交点坐标是,再求出图象与y轴的交点坐标是,可得图象与坐标轴围成的三角形面积,即可求解.
【详解】解:∵,
∴函数图象经过一、三、四象限的一条直线,且函数y的值随x值的增大而增大,故A、B选项错误,不符合题意;
当时,,即,
∴图象与x轴的交点坐标是,故C选项错误,不符合题意;
当时,,
∴图象与y轴的交点坐标是,
∴图象与坐标轴围成的三角形面积是,故D选项正确,符合题意;
故选:D
【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
9.D
【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.
【详解】解:枚黄金重x两,每枚白银重y两
由题意得:
故选D.
【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
10.C
【分析】本题考查了函数图象;根据函数图象中的数据,可以计算出甲和乙的速度,从而可以判断③;然后根据甲的速度可以计算出的值,即可判断①;根据乙的速度,可以计算出的值,可以判断②;根据甲和乙相遇前和相遇后相距米,可以计算出甲出发的时间,即可判断④.
【详解】解:由图可得,
甲的速度为:(米秒),故③错误,不符合题意;
乙的速度为:米秒,
,故①错误,不符合题意;
,故②正确,符合题意;
设当甲、乙相距米时,甲出发了秒,
两人相遇前:,
解得;
两人相遇后:,
解得;故④正确,符合题意;
故选:C.
11.答案不唯一,如:1
【分析】先对进行估值,在找出范围中的整数即可.
【详解】解:∵1
相关试卷
这是一份河南省平顶山市叶县2023-2024学年九年级上学期期末数学试题,共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省平顶山市叶县2023-2024学年七年级上学期期末数学试题(含答案),共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省平顶山市叶县2023-2024学年七年级上学期期末数学试题,共19页。