广东省深圳市盐田区2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.下列事件是必然事件的是( )
A.半径为2的圆的周长是2B.三角形的外角和等于360°
C.男生的身高一定比女生高D.同旁内角互补
2.下列四幅图案,在设计中用到了中心对称的图形是( )
A.B.C.D.
3.如图,的半径等于,如果弦所对的圆心角等于,那么圆心到弦的距离等于( )
A.B.C.D.
4.如果△ABC∽△DEF,相似比为2:1,且△DEF的面积为4,那么△ABC的面积为( )
A.1B.4C.8D.16
5.已知,一次函数与反比例函数在同一直角坐标系中的图象可能( )
A.B.
C.D.
6.在Rt△ABC中,∠C=90°,tanA=,则csB的值为( )
A.B.C.D.
7.下列关系式中,y是x的反比例函数的是( )
A.y=4xB.C.D.
8.已知点 、B(-1,y2)、C(3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是( )
A.y1
A.p<qB.p=qC.p>qD.不能确定
10.一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机模出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有80次摸到红球,则口袋中红球的个数大约有( )
A.8个B.7个C.3个D.2个
11.下列二次根式中,是最简二次根式的是( )
A.B.C.D.
12.如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为( )
A.3B.2C.D.1
二、填空题(每题4分,共24分)
13.已知⊙O的周长等于6πcm,则它的内接正六边形面积为_____ cm2
14.方程的解为_____.
15.如图,在△ABC中,E,F分别为AB,AC的中点,则△AEF与△ABC的面积之比为 .
16.写出一个图象的顶点在原点,开口向下的二次函数的表达式_____.
17.某校棋艺社开展围棋比赛,共位学生参赛.比赛为单循环制,所有参赛学生彼此恰好比赛一场.记分规则为:每场比赛胜者得3分,负者得0分,平局各得1分.比赛结束后,若所有参赛者的得分总和为76分,且平局的场数不超过比赛场数的,则__________.
18.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在M处,∠BEF=70°,则∠ABE=_____度.
三、解答题(共78分)
19.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度数;
(2)求证:AE是⊙O的切线;
(3)当BC=4时,求劣弧AC的长.
20.(8分)在正方形中,点是直线上动点,以为边作正方形,所在直线与所在直线交于点,连接.
(1)如图1,当点在边上时,延长交于点,与交于点,连接.
①求证:;
②若,求的值;
(2)当正方形的边长为4,时,请直接写出的长.
21.(8分)在平面直角坐标系中,点O(0,0),点A(﹣3,0).已知抛物线y=﹣x2+2mx+3(m为常数),顶点为P.
(1)当抛物线经过点A时,顶点P的坐标为 ;
(2)在(1)的条件下,此抛物线与x轴的另一个交点为点B,与y轴交于点C.点Q为直线AC上方抛物线上一动点.
①如图1,连接QA、QC,求△QAC的面积最大值;
②如图2,若∠CBQ=45°,请求出此时点Q坐标.
22.(10分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.
(1)求斜坡CD的高度DE;
(2)求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).
23.(10分)如图,正方形ABCD中,点F是BC边上一点,连结AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连结DG.
(1)填空:若∠BAF=18°,则∠DAG=______°.
(2)证明:△AFC∽△AGD;
(3)若=,请求出的值.
24.(10分)如图所示,已知在平面直角坐标系中,抛物线(其中、为常数,且)与轴交于点,它的坐标是,与轴交于点,此抛物线顶点到轴的距离为4.
(1)求抛物线的表达式;
(2)求的正切值;
(3)如果点是抛物线上的一点,且,试直接写出点的坐标.
25.(12分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是45°,若坡角∠FAE=30°,求大树的高度(结果保留根号).
26.(12分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒······一只到第格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求是多少?请同学们阅读以下解答过程就知道答案了.
设,
则
即:
事实上,按照这位大臣的要求,放满一个棋盘上的个格子需要粒米.那么到底多大呢?借助计算机中的计算器进行计算,可知答案是一个位数: ,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:
我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,则塔的顶层共有多少盏灯?
计算:
某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:
已知一列数:,其中第一项是,接下来的两项是,再接下来的三项是,以此类推,求满足如下条件的所有正整数,且这一数列前项和为的正整数幂.请直接写出所有满足条件的软件激活码正整数的值.
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、C
4、D
5、A
6、A
7、C
8、D
9、A
10、A
11、B
12、C
二、填空题(每题4分,共24分)
13、
14、,
15、3:3.
16、y=﹣2x2(答案不唯一)
17、1
18、1
三、解答题(共78分)
19、(1)60°;(2)证明略;(3)
20、(1)①证明见解析;②;(2)或.
21、(1)(﹣1,4);(2)①;②Q(﹣,).
22、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.
23、 (1)27;(2)证明见解析;(3)=.
24、(1);(2);(2)点的坐标是或
25、大树的高度为(9+3)米
26、(1)3;(2);(3)
广东省深圳盐田区六校联考2023-2024学年九年级数学第一学期期末调研模拟试题含答案: 这是一份广东省深圳盐田区六校联考2023-2024学年九年级数学第一学期期末调研模拟试题含答案,共8页。
广东省深圳市北大附中深圳南山分校2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案: 这是一份广东省深圳市北大附中深圳南山分校2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔,计算的值为,在比例尺为1等内容,欢迎下载使用。
2023-2024学年广东省深圳市坪山区九年级数学第一学期期末教学质量检测试题含答案: 这是一份2023-2024学年广东省深圳市坪山区九年级数学第一学期期末教学质量检测试题含答案,共7页。试卷主要包含了函数与抛物线的图象可能是等内容,欢迎下载使用。