肇庆市重点中学2023-2024学年九上数学期末教学质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.已知x=﹣2是一元二次方程x2+mx+4=0的一个解,则m的值是( )
A.﹣4B.4C.0D.0或4
2.某地区在一次空气质量检测中,收集到5天的空气质量指数如下:81,70,56,61,81,这组数据的中位数和众数分别是( )
A.70,81B.81,81C.70,70D.61,81
3.解方程2(5x-1)2=3(5x-1)的最适当的方法是 ( )
A.直接开平方法.B.配方法C.公式法D.分解因式法
4.二次函数y=(x﹣4)2+2图象的顶点坐标是( )
A.(﹣4,2)B.(4,﹣2)C.(4,2)D.(﹣4,﹣2)
5.如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,则乙建筑物的高度为( )米.
A.30B.30﹣30C.30D.30
6.在△ABC中,∠C=90°,则下列等式成立的是( )
A.sinA=B.sinA=C.sinA=D.sinA=
7.已知,则( )
A.2B.C.3D.
8.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=( ).
A.-2B.2C.-4D.4
9.已知:在△ABC中,∠A=78°,AB=4,AC=6,下列阴影部分的三角形与原△ABC不相似的是( )
A.B.
C.D.
10.如图,在菱形ABCD中,∠BAD=120°,AB=2,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为( )
A.B.C.2D.
11.下列对于二次根式的计算正确的是( )
A.B.2=2
C.2=2D.2=
12.摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x名学生,则根据题意列出的方程是( )
A.x(x+1)=182 B.0.5x(x+1)=182
C.0.5x(x-1)=182 D.x(x-1)=182
二、填空题(每题4分,共24分)
13.若点在反比例函数的图像上,则______.
14.请写出一个位于第一、三象限的反比例函数表达式,y = .
15.如图,矩形ABCD的顶点A、B在x轴的正半轴上,反比例函数y=(k≠0)在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值_____.
16.若,则=______
17.若,则=___________.
18.已知关于x的函数满足下列条件:①当x>0时,函数值y随x值的增大而减小;②当x=1时,函数值y=1.请写一个符合条件函数的解析式:_____.(答案不唯一)
三、解答题(共78分)
19.(8分)在一元二次方程x2-2ax+b=0中,若a2-b>0,则称a是该方程的中点值.
(1)方程x2-8x+3=0的中点值是________;
(2)已知x2-mx+n=0的中点值是3,其中一个根是2,求mn的值.
20.(8分)解方程
(1)(用配方法)
(2)
(3)计算:
21.(8分)已知关于的一元二次方程的两实数根,满足,求的取值范围.
22.(10分)(1)计算:计算:6cs45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017;
(2)先化简,再求值:÷,其中满足.
23.(10分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图1摆放,点D为AB边的中点,DE交AC于点P,DF经过点C,且BC=2.
(1)求证:△ADC∽△APD;
(2)求△APD的面积;
(3)如图2,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.
24.(10分)小红和小丁玩纸牌优戏,如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌面上.
(1)小红从4张牌中抽取一张,这张牌的数字为偶数的概率是 ;
(2)小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树秋图或列表法求出的小红获胜的概率.
25.(12分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.
(1)求一次函数的表达式;
(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价的范围.
26.(12分)如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点.
(1)求此反比例函数和一次函数的解析式;
(2)求△AOB的面积;
参考答案
一、选择题(每题4分,共48分)
1、B
2、A
3、D
4、C
5、B
6、B
7、B
8、D
9、C
10、B
11、C
12、D
二、填空题(每题4分,共24分)
13、-1
14、(答案不唯一).
15、1
16、
17、
18、y=(答案不唯一).
三、解答题(共78分)
19、 (1)4;(2)48.
20、(1),;(2),;(3)
21、
22、 (1)8;(1)-1
23、 (1)见解析;(2) ;(3) 不会随着α的变化而变化
24、(1);(2).
25、解:(3)一次函数的表达式为
(4)当销售单价定为4元时,商场可获得最大利润,最大利润是893元
(3)销售单价的范围是.
26、 (1)y=-;y=-x-2;(2)6
潍坊市重点中学2023-2024学年数学九上期末教学质量检测模拟试题含答案: 这是一份潍坊市重点中学2023-2024学年数学九上期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,方程x等内容,欢迎下载使用。
2023-2024学年湖南省重点中学九上数学期末教学质量检测模拟试题含答案: 这是一份2023-2024学年湖南省重点中学九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了一元二次方程的根的情况是等内容,欢迎下载使用。
玉林市重点中学2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份玉林市重点中学2023-2024学年九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了如图,已知A,若函数y=,已知点P是线段AB的黄金分割点,下列事件中是随机事件的是,如图所示,几何体的左视图为等内容,欢迎下载使用。