云南省蒙自市2023-2024学年数学九上期末复习检测模拟试题含答案
展开
这是一份云南省蒙自市2023-2024学年数学九上期末复习检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,反比例函数,下列说法不正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.方程的解是( )
A.B.C.D.
2.在下列函数图象上任取不同两点P(x1,y1),Q(x2,y2),一定能使(x2﹣x1)(y2﹣y1)>0成立的是( )
A.y=﹣2x+1(x<0)B.y=﹣x2﹣2x+8(x<0)
C.y=(x>0)D.y=2x2+x﹣6(x>0)
3.如图,一根6m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动)那么小羊A在草地上的最大活动区域面积是( )
A.9πm2B.πm2C.15πm2D.πm2
4.如图,,相交于点,.若,,则与的面积之比为( )
A.B.C.D.
5.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是( )
A.B.C.D.
6.正方形ABCD内接于⊙O,若⊙O的半径是,则正方形的边长是( )
A.1B.2C. D.2
7.从,0,π,,6这五个数中随机抽取一个数,抽到有理数的概率是( )
A.B.C.D.
8.如图,点D,E分别在△ABC的AB,AC边上,增加下列哪些条件,①∠AED=∠B,②,③,使△ADE与△ACB一定相似( )
A.①②B.②C.①③D.①②③
9.反比例函数,下列说法不正确的是( )
A.图象经过点(1,-3)B.图象位于第二、四象限
C.图象关于直线y=x对称D.y随x的增大而增大
10.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正确结论的是( )
A.①③④B.②④⑤C.①③⑤D.①③④⑤
11.由几个相同的小正方体搭成的一个几何体如图所示,从正面看这个几何体得到的平面图形是( )
A.B.C.D.
12.若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是( )
A.k>1B.k<1C.k>1且k≠0D.k<1且k≠0
二、填空题(每题4分,共24分)
13.方程ax2+x+1=0 有两个不等的实数根,则a的取值范围是________.
14.已知:在矩形ABCD中,AB=4,AD=10,点P是BC上的一点,若∠APD=90°,则AP=_____.
15.在比例尺为1∶500 000的地图上,量得A、B两地的距离为3 cm,则A、B两地的实际距离为_____km.
16.已知抛物线的对称轴是直线,其部分图象如图所示,下列说法中:①;②;③;④当时,,正确的是_____(填写序号).
17.关于x的分式方程有增根,则m的值为__________.
18.在Rt△ABC中,,,,则的值等于__.
三、解答题(共78分)
19.(8分)天猫商城某网店销售童装,在春节即将将来临之际,开展了市场调查发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件;如果每件童装降价1元,那么平均每天可售出2件.
(1)假设每件童装降价元时,每天可销售 件,每件盈利 元;(用含人代数式表示)
(2)每件童装降价多少元时,平均每天盈利最多?每天最多盈利多少元?
20.(8分)如图,一次函数y1=k1x+b与反比例函数y1=的图象交于点A(a,﹣1)和B(1,3),且直线AB交y轴于点C,连接OA、OB.
(1)求反比例函数的解析式和点A的坐标;
(1)根据图象直接写出:当x在什么范围取值时,y1<y1.
21.(8分)某商场一种商品的进价为每件元,售价为每件元.每天可以销售件,为尽快减少库存,商场决定降价促销.
(1)若该商品连续两次下调相同的百分率后售价降至每件元,求两次下降的百分率;
(2)经调查,若该商品每降价元,每天可多销售件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?
22.(10分)如图,是的平分线,点在上,以为直径的交于点,过点作的垂线,垂足为点,交于点.
(1)求证:直线是的切线;
(2)若的半径为,,求的长.
23.(10分)如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).
(1)求抛物线的函数表达式;
(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;
(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.
24.(10分)抛物线与轴交于A,B两点,与轴交于点C,连接BC.
(1)如图1,求直线BC的表达式;
(2)如图1,点P是抛物线上位于第一象限内的一点,连接PC,PB,当△PCB面积最大时,一动点Q从点P从出发,沿适当路径运动到轴上的某个点G处,再沿适当路径运动到轴上的某个点H处,最后到达线段BC的中点F处停止,求当△PCB面积最大时,点P的坐标及点Q在整个运动过程中经过的最短路径的长;
(3)如图2,在(2)的条件下,当△PCB面积最大时,把抛物线向右平移使它的图象经过点P,得到新抛物线,在新抛物线上,是否存在点E,使△ECB的面积等于△PCB的面积.若存在,请求出点E的坐标,若不存在,请说明理由.
25.(12分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
26.(12分)在如图网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=1.
(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;
(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并直接写出A、C两点的坐标;
(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并直接写出点A2、B2、C2的坐标.
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、B
4、B
5、A
6、B
7、C
8、C
9、D
10、D
11、A
12、D
二、填空题(每题4分,共24分)
13、且a≠0
14、2或4
15、1
16、①③④.
17、1.
18、
三、解答题(共78分)
19、(1)20+2x,;(2)降价为15元时,盈利最多为1250元
20、(1)y=,A(﹣3,﹣1);(1)x<﹣3或0<x<1时,y1<y1
21、(1)该商品连续两次下降的百分率为;(2)售价为元时,可获最大利润元
22、(1)证明见解析;(2)1.
23、(2)y=﹣x2﹣x+2; (2)(0,2)或(﹣2,2)或(,﹣2)或(,﹣2);(3)2.
24、(1)(2)点Q按照要求经过的最短路径长为(3)存在,满足条件的点E有三个,即(,),(,), (,)
25、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.
26、(1)见解析;
(2)(0,1),(﹣3,1);
(3)(0,﹣1),(3,﹣5),(3,﹣1).
相关试卷
这是一份2023-2024学年嘉兴市秀洲区九上数学期末复习检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,抛物线y=﹣,一元二次方程x等内容,欢迎下载使用。
这是一份2023-2024学年云南省临沧市数学九上期末复习检测模拟试题含答案,共8页。试卷主要包含了下列事件是必然事件的是,已知甲、乙两地相距100等内容,欢迎下载使用。
这是一份2023-2024学年云南省红河州蒙自市九上数学期末综合测试试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图所示的几何体的主视图为,抛物线,下列说法正确的是,下列事件是必然事件的是等内容,欢迎下载使用。