云南省昆明市八校2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=40°,则∠BAD为( )
A.40°B.50°C.60°D.70°
2.二次函数与一次函数在同一坐标系中的大致图象可能是( )
A.B.
C.D.
3.下列计算中,结果是的是
A.B.C.D.
4.如图,点E、F是边长为4的正方形ABCD边AD、AB上的动点,且AF=DE,BE交CF于点P,在点E、F运动的过程中,PA的最小值为( )
A.2B.2C.4﹣2D.2﹣2
5.如图,在正方形网格中,每个小正方形的边长是个单位长度,以点为位似中心,在网格中画,使与位似,且与的位似比为,则点的坐标可以为( )
A.B.C.D.
6.已知反比例函数图象如图所示,下列说法正确的是( )
A.
B.随的增大而减小
C.若矩形面积为2,则
D.若图象上两个点的坐标分别是,,则
7.如图,一次函数的图象与反比例函数(为常数且)的图象都经过,结合图象,则不等式的解集是( )
A.B.
C.或D.或
8.不等式组的整数解有( )
A.4 个B.3 个C.2个D.1个
9.某工厂一月份生产机器100台,计划二、三月份共生产机器240台,设二、三月份的平均增长率为x,则根据题意列出方程是( )
A.100(1+x)2=240
B.100(1+x)+100(1+x)2=240
C.100+100(1+x)+100(1+x)2=240
D.100(1﹣x)2=240
10.若反比例函数的图象经过点,则这个函数的图象一定还经过点( )
A.B.C.D.
11.某学习小组在研究函数y=x3﹣2x的图象与性质时,列表、描点画出了图象.结合图象,可以“看出”x3﹣2x=2实数根的个数为( )
A.1B.2C.3D.4
12.如图,随意向水平放置的大⊙O内部区域抛一个小球,则小球落在小⊙O内部(阴影)区域的概率为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数关系式是y=60t-t2,在飞机着陆滑行中,最后2s滑行的距离是______m
14.把多项式分解因式的结果是__________.
15.如图,抛物线(是常数,),与轴交于两点,顶点的坐标是,给出下列四个结论:①;②若,,在抛物线上,则;③若关于的方程有实数根,则;④,其中正确的结论是__________.(填序号)
16.若=,则的值为________.
17.已知二次函数y=ax2+bx+c的图象如图所示,则a_____1,b_____1,c_____1.
18.已知A(﹣4,y1),B(﹣1,y2),C(1,y3) 是反比例函数y=﹣图象上的三个点,把y1与、的的值用小于号连接表示为________.
三、解答题(共78分)
19.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B=60°.
(1)求∠ADC的度数;
(2)求证:AE是⊙O的切线.
20.(8分)综合与探究
如图,抛物线经过点A(-2,0),B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接AC,BC,DB,DC,
(1)求抛物线的函数表达式;
(2)△BCD的面积等于△AOC的面积的时,求的值;
(3)在(2)的条件下,若点M是轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.
21.(8分)某小区为改善生态环境,实行生活垃圾的分类处理,将生活垃圾分成三类:厨房垃圾、可回收垃圾和其他垃圾,分别记为,并且设置了相应的垃圾箱“厨房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为.
(1)为了了解居民生活垃圾分类投放的情况,现随机抽取了小区三类垃圾箱中总共吨生活垃圾,数据统计如下图(单位:吨):
请根据以上信息,估计“厨房垃圾”投放正确的概率;
(2)若将三类垃圾随机投入三类垃圾箱,请用画树状图或列表格的方法求出垃圾投放正确的概率.
22.(10分)如图,四边形是的内接四边形,,,,求的长.
23.(10分)如图所示,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,3)、B(1,2),△AOB绕点O逆时针旋转90°后得到△A1OB1.
(1)画出△A1OB1,直接写出点A1,B1的坐标;
(2)在旋转过程中,点B经过的路径的长.
24.(10分)如图1,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.
(1)求抛物线的函数表达式;
(2)若点P是位于直线BC上方抛物线上的一个动点,求△BPC面积的最大值;
(3)若点D是y轴上的一点,且以B,C,D为顶点的三角形与相似,求点D的坐标;
(4)若点E为抛物线的顶点,点F(3,a)是该抛物线上的一点,在轴、轴上分别找点M、N,使四边形EFMN的周长最小,求出点M、N的坐标.
25.(12分)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.如图1,∠ABC=∠ADC=90°,四边形ABCD是损矩形,则该损矩形的直径是线段AC.同时我们还发现损矩形中有公共边的两个三角形角的特点:在公共边的同侧的两个角是相等的.如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC.
(1)请在图1中再找出一对这样的角来: = .
(2)如图2,△ABC中,∠ABC=90°,以AC为一边向外作菱形ACEF,D为菱形ACEF对角线的交点,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.
(3)在第(2)题的条件下,若此时AB=6,BD=8,求BC的长.
26.(12分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若BE=4,DE=8,求AC的长.
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、D
4、D
5、B
6、D
7、C
8、B
9、B
10、A
11、C
12、B
二、填空题(每题4分,共24分)
13、6
14、
15、①②④
16、
17、< < >
18、
三、解答题(共78分)
19、(1)60° (2)见解析
20、 (1);(2)3;(3).
21、(1);(2).
22、.
23、(1)A1(﹣3,3),B1(﹣2,1);(2) .
24、(1);(2)△BPC面积的最大值为 ;(3)D的坐标为(0,1)或(0,);(4)M(,0),N(0,)
25、(1)∠ABD=∠ACD(或∠DAC=∠DBC );(2)四边形ACEF为正方形,理由见解析;(3)1
26、(1)相切,证明见解析;(2)6.
2023-2024学年云南省昆明市学校际合作学校九上数学期末质量检测模拟试题含答案: 这是一份2023-2024学年云南省昆明市学校际合作学校九上数学期末质量检测模拟试题含答案,共8页。试卷主要包含了方程,方程的根为等内容,欢迎下载使用。
2023-2024学年云南省昆明市八校联考九上数学期末检测试题含答案: 这是一份2023-2024学年云南省昆明市八校联考九上数学期末检测试题含答案,共8页。
2023-2024学年云南省昆明市官渡区数学八上期末达标检测模拟试题含答案: 这是一份2023-2024学年云南省昆明市官渡区数学八上期末达标检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,由四舍五入得到的近似数,精确到,若分式=0,则x的值是等内容,欢迎下载使用。