2023-2024学年河源市重点中学数学九上期末调研试题含答案
展开
这是一份2023-2024学年河源市重点中学数学九上期末调研试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,下列事件属于随机事件的是,坡比常用来反映斜坡的倾斜程度,的值等于等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.下列几何图形中,是中心对称图形但不是轴对称图形的是 ( )
A.圆B.正方形C.矩形D.平行四边形
2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A.B.C.D.
3.如图,在平面直角坐标系中,以为圆心作⊙,⊙与轴交于、,与轴交于点,为⊙上不同于、的任意一点,连接、,过点分别作于,于.设点的横坐标为,.当点在⊙上顺时针从点运动到点的过程中,下列图象中能表示与的函数关系的部分图象是( )
A.B.C.D.
4.如图,⊙O是正△ABC的外接圆,点D是弧AC上一点,则∠BDC的度数( ).
A.50°B.60°C.100°D.120°
5.一块圆形宣传标志牌如图所示,点,,在上,垂直平分于点,现测得,,则圆形标志牌的半径为( )
A.B.C.D.
6.四条线段a,b,c,d成比例,其中b=3cm,c=8cm,d=12cm,则a=( )
A.2cmB.4cmC.6cmD.8cm
7.下列事件属于随机事件的是( )
A.抛出的篮球会下落
B.两枚骰子向上一面的点数之和大于1
C.买彩票中奖
D.口袋中只装有10个白球,从中摸出一个黑球
8.一个小正方体沿着斜面前进了10 米,横截面如图所示,已知,此时小正方体上的点距离地面的高度升高了( )
A.5米B.米C.米D.米
9.坡比常用来反映斜坡的倾斜程度.如图所示,斜坡AB坡比为( ).
A.:4B.:1C.1:3D.3:1
10.的值等于( )
A.B.C.D.
11. 如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是( )
A.20°B.30°C.40°D.70°
12.如图,在△ABC中,D,E分别是AB,BC边上的点,且DE∥AC,若,,则△ACD的面积为( )
A.64B.72C.80D.96
二、填空题(每题4分,共24分)
13.若、是关于的一元二次方程的两个根,且,则,,,的大小关系是_____________.
14.已知二次函数的自变量与函数的部分对应值列表如下:
则关于的方程的解是______.
15.将边长为的正方形绕点按顺时针方向旋转到的位置(如图),使得点落在对角线上,与相交于点,则=_________.(结果保留根号)
16.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是___________.
17.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1 cm,则BF=__________cm.
18.如图,AE、BE是△ABC的两个内角的平分线,过点A作AD⊥AE.交BE的延长线于点D.若AD=AB,BE:ED=1:2,则cs∠ABC=_____.
三、解答题(共78分)
19.(8分)某中学准备举办一次演讲比赛,每班限定两人报名,初三(1)班的三位同学(两位女生,一位男生)都想报名参加,班主任李老师设计了一个摸球游戏,利用已学过的概率知识来决定谁去参加比赛,游戏规则如下:在一个不透明的箱子里放3个大小质地完全相同的乒乓球,在这3个乒乓球上分别写上、、(每个字母分别代表一位同学,其中、分别代表两位女生,代表男生),搅匀后,李老师从箱子里随机摸出一个乒乓球,不放回,再次搅匀后随机摸出第二个乒乓球,根据乒乓球上的字母决定谁去参加比赛。
(1)求李老师第一次摸出的乒乓球代表男生的概率;
(2)请用列表或画树状图的方法求恰好选定一名男生和一名女生参赛的概率.
20.(8分)如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB=20米,顶点M距水面6米(即MO=6米),小孔水面宽度BC=6米,顶点N距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:
(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.
(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.
21.(8分)如图,在中,,,.动点从点出发,沿线段向终点以/的速度运动,同时动点从点出发,沿折线以/的速度向终点运动,当有一点到达终点时,另一点也停止运动,以、为邻边作设▱与重叠部分图形的面积为点运动的时间为.
(1)当点在边上时,求的长(用含的代数式表示);
(2)当点落在线段上时,求的值;
(3)求与之间的函数关系式,并写出自变量的取值范围.
22.(10分)如图1,点A是x轴正半轴上的动点,点B的坐标为(0,4),M是线段AB的中点.将点M绕点A顺时针方向旋转900得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点.连结AC,BC,CD,设点A的横坐标为t,
(1)当t=2时,求CF的长;
(2)①当t为何值时,点C落在线段CD上;
②设△BCE的面积为S,求S与t之间的函数关系式;
(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到,再将A,B,为顶点的四边形沿剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出符合上述条件的点坐标,
23.(10分)如图,抛物线与轴交于点,直线与轴交于点与轴左侧抛物线交于点,直线与轴右侧抛物线交于点.
(1)求抛物线的解析式;
(2)点是直线上方抛物线上一动点,求面积的最大值;
(3)点是抛物线上一动点,点是抛物线对称轴上一动点,请直接写出以点为顶点的四边形是平行四边形时点的坐标.
24.(10分)车辆经过某市收费站时,可以在4个收费通道 A、B、C、D中,可随机选择其中的一个通过.
(1)车辆甲经过此收费站时,选择A通道通过的概率是 ;
(2)若甲、乙两辆车同时经过此收费站,请用列表法或树状图法确定甲乙两车选择不同通道通过的概率.
25.(12分)一个盒子中装有两个红球,一个白球和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请你用列表法和画树状图法求两次摸到的球的颜色能配成紫色的概率(说明:红色和蓝色能配成紫色)
26.(12分)已知:如图,Rt△ABC中,∠ACB=90°,sinB=,点D、E分别在边AB、BC上,且AD∶DB=2∶3,DE⊥BC.
(1)求∠DCE的正切值;
(2)如果设,,试用、表示.
参考答案
一、选择题(每题4分,共48分)
1、D
2、D
3、A
4、B
5、B
6、A
7、C
8、B
9、A
10、A
11、A
12、C
二、填空题(每题4分,共24分)
13、
14、,
15、
16、(2,10)或(﹣2,0)
17、2+
18、
三、解答题(共78分)
19、(1)李老师第一次摸出的乒乓球代表男生的概率为;(2)恰好选定一名男生和t名女生参赛的概率为.
20、(1)巡逻船能安全通过大孔,理由见解析;(2)小船不能安全通过小孔,理由见解析.
21、(1);(2);(3)详见解析
22、(2)CF=2;(2)①;②;(3)点的坐标为:(22,2),(8,2),(2,2).
23、 (1) ;(2)当时,;(3)点的坐标为或.
24、(1);(2),图见解析
25、.
26、(1);(2).
…
-3
-2
-1
0
…
…
0
-3
-4
-3
…
相关试卷
这是一份2023-2024学年广东省河源市正德中学数学九上期末经典试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,某排球队名场上队员的身高,如果两个相似三角形的相似比为2等内容,欢迎下载使用。
这是一份2023-2024学年宁德市重点中学数学九上期末调研模拟试题含答案,共8页。试卷主要包含了如图,在▱ABCD中,AB,抛物线的顶点坐标是,如果,那么=等内容,欢迎下载使用。
这是一份2023-2024学年河池市重点中学数学九上期末调研模拟试题含答案,共7页。试卷主要包含了下列运算正确的是,计算=等内容,欢迎下载使用。