2023-2024学年江苏省镇江市丹徒区数学九上期末考试试题含答案
展开
这是一份2023-2024学年江苏省镇江市丹徒区数学九上期末考试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,AB是⊙的直径,AC是⊙的切线,A为切点,BC与⊙交于点D,连结OD.若,则∠AOD的度数为( )
A.B.C.D.
2.已知点在同一个函数的图象上,这个函数可能是( )
A.B.C.D.
3.下列事件是必然事件的是( )
A.明天太阳从西方升起
B.打开电视机,正在播放广告
C.掷一枚硬币,正面朝上
D.任意一个三角形,它的内角和等于180°
4.下列汽车标志中,是中心对称图形的有 ( )个.
A.1B.2C.3D.4
5.《九章算术》是我国古代第一部自成体系的数学专著,书中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深两寸,锯道长八寸,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深2寸(ED=2寸),锯道长8寸”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算圆形木材的直径AC是( )
A.5寸B.8寸C.10寸D.12寸
6.如图,一条抛物线与轴相交于、两点(点在点的左侧),其顶点在线段上移动.若点、的坐标分别为、,点的横坐标的最大值为,则点的横坐标的最小值为( )
A.B.C.D.
7.如图,内接于圆,,,若,则弧的长为( )
A.B.C.D.
8.如图,点A、B、C都在⊙O上,若∠ABC=60°,则∠AOC的度数是( )
A.100°B.110°C.120°D.130°
9.如图,平行于x轴的直线与函数y1=(a>1,x>1),y2=(b>1.x>1)的图象分别相交于A、B两点,且点A在点B的右侧,在X轴上取一点C,使得△ABC的面积为3,则a﹣b的值为( )
A.6B.﹣6C.3D.﹣3
10.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为,缆车速度为每分钟米,从山脚下到达山顶缆车需要分钟,则山的高度为( )米.
A.B.
C.D.
11.如图所示,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴于点A,点C在函数y=(x>0)的图象上,若OA=1,则k的值为( )
A.4B.2C.2D.
12.抛掷一个质地均匀且六个面上依次刻有1-6的点数的正方体型骰子,如图.观察向上的一面的点数,下列情况属必然事件的是( ).
A.出现的点数是7B.出现的点数不会是0
C.出现的点数是2D.出现的点数为奇数
二、填空题(每题4分,共24分)
13.计算若,那么a2019 +b2020=____________.
14.如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为__________米.
15.点A(﹣3,m)和点B(n,2)关于原点对称,则m+n=_____.
16.一个不透明的口袋中装有个红球和个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为__________.
17.已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为______cm.
18.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.
三、解答题(共78分)
19.(8分)(1)计算:
(2)解方程:
20.(8分)求证:对角线相等的平行四边形是矩形.(要求:画出图形,写出已知和求证,并给予证明)
21.(8分)如图,直线与双曲线相交于点A,且,将直线向左平移一个单位后与双曲线相交于点B,与x轴、y轴分别交于C、D两点.
(1)求直线的解析式及k的值;
(2)连结、,求的面积.
22.(10分)如图,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
23.(10分)在学习“轴对称现象”内容时,老师让同学们寻找身边的轴对称图形,小明利用手中的一副三角尺和一个量角器(如图所示)进行探究.
(1)小明在这三件文具中任取一件,结果是轴对称图形的概率是_________;(取三件中任意一件的可能性相同)
(2)小明发现在、两把三角尺中各选一个角拼在一起(无重叠无缝隙)会得到一个更大的角,若每个角选取的可能性相同,请用画树状图或列表的方法说明拼成的角是钝角的概率是多少.
24.(10分)如图,在△ABC中,AB=AC,CD是AB边上的中线,延长AB到点E,使BE=AB,连接CE.求证:CD= CE.
25.(12分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.
(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;
(2)求摸出的两个小球号码之和等于4的概率.
26.(12分)综合与实践
问题情境
数学课上,李老师提出了这样一个问题:如图1,点是正方形内一点,,,.你能求出的度数吗?
(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:
思路一:将绕点逆时针旋转,得到,连接,求出的度数.
思路二:将绕点顺时针旋转,得到,连接,求出的度数.
请参考以上思路,任选一种写出完整的解答过程.
类比探究
(2)如图2,若点是正方形外一点,,,,求的度数.
拓展应用
(3)如图3,在边长为的等边三角形内有一点,,,则的面积是______.
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、D
4、B
5、C
6、C
7、A
8、C
9、A
10、C
11、C
12、B
二、填空题(每题4分,共24分)
13、0
14、
15、1
16、
17、1
18、1
三、解答题(共78分)
19、(1);(2)x 1=1,.
20、见解析.
21、(1)直线的解析式为,k=1;(2)2.
22、(1)y=﹣x2+x+2(2)(,4)或(,)或(,﹣)(3)(2,1)
23、(1)(2)
24、见解析
25、 (1)见解析;(2).
26、 (1)∠APB=135°,(2)∠APB=45°;(3).
相关试卷
这是一份255,江苏省镇江市丹徒区2023-2024学年九年级上学期期中数学试题,共25页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年江苏省镇江市丹徒区宜城中学数学九上期末达标测试试题含答案,共7页。试卷主要包含了抛物线y=,下列说法正确的是,下列函数的对称轴是直线的是等内容,欢迎下载使用。
这是一份2023-2024学年江苏省镇江市丹徒区数学九年级第一学期期末复习检测模拟试题含答案,共8页。试卷主要包含了下列命题错误的是等内容,欢迎下载使用。