专题13 二次函数的应用综合过关检测-备战2024年中考数学一轮复习考点全预测(全国通用)
展开
这是一份专题13 二次函数的应用综合过关检测-备战2024年中考数学一轮复习考点全预测(全国通用),文件包含专题13二次函数的应用综合过关检测-备战2024年中考数学一轮复习考点帮全国通用解析版docx、专题13二次函数的应用综合过关检测-备战2024年中考数学一轮复习考点帮全国通用考试版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
选择题(本题共10小题,每小题3分,共30分)。
1.在2022年的卡塔尔世界杯中,阿根廷守门员马丁内斯表现突出,他大脚开出去的球的高度与球在空中运行时间的关系,用图象描述大致是如图中的( )
A.B.
C.D.
2.一枚炮弹射出x秒后的高度为y米,且y与x之间的关系为y=ax2+bx+c(a≠0)若此炮弹在第3.2秒与第5.8秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
A.第3.3秒B.第4.5秒C.第5.2秒D.第4.3秒
3.如图所示,赵州桥的桥拱用抛物线的部分表示,其函数的关系式为,当水面宽度AB为20m时,此时水面与桥拱顶的高度DO是( )
A.4mB.2mC.9mD.10m
4.某水果销售商有100千克苹果,当苹果单价为15元/千克时,能全部销售完,市场调查表明苹果单价每提高1元,销售量减少6千克,若苹果单价提高x元,则苹果销售额y关于x的函数表达式为( )
A.y=x(100﹣x)B.y=x(100﹣6x)
C.y=(100﹣x)(15+x)D.y=(100﹣6x)(15+x)
5.某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣t2+30t+1.若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为( )
A.6sB.7sC.8sD.9s
6.如图1是某篮球运动员在比赛中投篮,球运动的路线为抛物线的一部分,如图2,球出手时离地面约2.15米,与篮筐的水平距离4.5m,此球准确落入高为3.05米的篮筐.当球在空中运行的水平距离为2.5米时,球恰好达到最大高度,则球在运动中离地面的最大高度为( )
A.4.55米B.4.60米C.4.65米D.4.70米
7.如图,△ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm,点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是( )
A.8cm2B.16cm2C.24cm2D.32cm2
8.某市新建一座景观桥.如图,桥的拱肋ADB可视为抛物线的一部分,桥面AB可视为水平线段,桥面与拱肋用垂直于桥面的杆状景观灯连接,拱肋的跨度AB为40米,桥拱的最大高度CD为16米(不考虑灯杆和拱肋的粗细),则与CD的距离为5米的景观灯杆MN的高度为( )
A.13米B.14米C.15米D.16米
9.抛物线y=ax2+bx+c交x轴于A(﹣1,0),B(3,0),交y轴的负半轴于C,顶点为D.下列结论:①2a+b=0;②2c<3b;③当m≠1时,a+b<am2+bm;④当△ABD是等腰直角三角形时,则a=;⑤当△ABC是等腰三角形时,a的值有3个.其中正确的有( )个.
A.5B.4C.3D.2
10.如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是( )
A.①②③B.②③C.①③④D.②④
填空题(本题共6题,每小题2分,共12分)。
11.一辆汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=﹣2t2+18t,则汽车刹车后最远可以行驶 m.
12.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式是:h=30t﹣5t2,这个函数图象如图所示,则小球从第3s到第5s下降的高度为 m.
13.廊桥是我国古老的文化遗产,如图是某座抛物线形的廊桥示意图.已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是 米.
14.“水幕电影”的工作原理是把影像打在抛物线状的水幕上,通过光学原理折射出图象,水幕是由若干个水嘴喷出的水柱组成的(如图),水柱的最高点为P,AB=2m,BP=9m,水嘴高AD=5m,则水柱落地点C到水嘴所在墙的距离AC是 m.
15.如图,在△ABC中,∠B=90°,AB=8cm,BC=6cm,点P从点A开始沿AB向B以2cm/s的速度移动,点Q从点B开始沿BC向C点以1cm/s的速度移动,如果P,Q分别从A,B同时出发,当△PBQ的面积为最大时,运动时间t为 s.
16.直播购物逐渐走进了人们的生活,某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件,通过市场调查发现,每件小商品售价每降低1元,日销售量增加2件,若将每件商品售价定为x元,日销售量设为y件.当x为 时,每天的销售利润最大,最大利润是 .
三、解答题(本题共6题,共58分)。
17.(8分)某商店经销一种销售成本为30元/kg的水产品,据市场分析:若按50元/kg销售,一个月能售出300kg,销售单价每涨1元,月销售量就减少10kg.设售价为x元/kg(x>50),月销售量为ykg.
(1)求月销售量y与售价x之间的函数表达式;
(2)当售价定为多少时,月销售利润最大?最大利润是多少?
18.(8分)卡塔尔世界杯完美落幕.在一场比赛中,球员甲在离对方球门30米处的O点起脚吊射(把球高高地挑过守门员的头顶,射入球门),假如球飞行的路线是一条抛物线,在离球门14米时,足球达到最大高度8米.如图所示,以球员甲所在位置O点为原点,球员甲与对方球门所在直线为x轴,建立平面直角坐标系.
(1)求满足条件的抛物线的函数表达式;
(2)如果葡萄牙球员C罗站在球员甲前3米处,C罗跳起后最高能达到2.88米,那么C罗能否在空中截住这次吊射?
19.(10分)如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,﹣3).
(1)求抛物线的对称轴及k的值;
(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;
(3)点M是抛物线上一动点,且在第三象限.
①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;
②过点M作PM⊥x轴交线段AC于点P,求出线段PM长度的最大值.
20.(10分)某网店专门销售杭州第十九届亚运会吉祥物机器人“江南忆”套装,成本为每件30元,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示,网店每天的销售利润为W元.网店希望每天吉祥物机器人“江南忆”套装的销售量不低于250件.
(1)求y与x之间的函数关系式(不要求写自变量的取值范围);
(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)如果每天的利润不低于3000元,直接写出销售单价x(元)的取值范围.
21.(10分)如图,灌溉车为绿化带浇水,喷水口H离地竖直高度OH为1.5m.可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度EF=0.5m.下边缘抛物线是由上边缘抛物线向左平移得到,上边抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车喷水口到绿化带GD边的水平距离OD为d(单位:m).
(1)直接写出点的坐标:A( , ),H( , );
(2)求喷出水的最大射程OC;
(3)要使灌溉车行驶时喷出的水能灌到整个绿化带,直接写出d的最大值与最小值的差.
22.(12分)在平面直角坐标系中,抛物线y=x2+bx+m的对称轴为直线x=2,该抛物线与x轴交于M,N两点,且点M在点N的左侧.
(1)求b的值;
(2)若将抛物线y=x2+bx+m进行平移,使平移后的点M与原点O重合,并且在x轴上截取的线段长为6,求平移后的抛物线解析式;
(3)将抛物线y=x2+bx+m在y轴左侧部分沿x轴翻折,并保留其他部分得到新的图象C.
①当m=﹣1,且﹣5≤y≤0时,求x的取值范围;
②如图,已知点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点,且m<0时,直接写出m的取值范围.
相关试卷
这是一份专题06 分式方程及应用综合过关检测 -备战2024年中考数学一轮复习考点全预测(全国通用),文件包含专题06分式方程及应用综合过关检测-备战2024年中考数学一轮复习考点帮全国通用解析版docx、专题06分式方程及应用综合过关检测-备战2024年中考数学一轮复习考点帮全国通用考试版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份专题14 图形初步综合过关检测-备战2024年中考数学一轮复习考点全预测(全国通用),文件包含专题14图形初步综合过关检测-备战2024年中考数学一轮复习考点帮全国通用解析版docx、专题14图形初步综合过关检测-备战2024年中考数学一轮复习考点帮全国通用考试版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
这是一份专题11 反比例函数综合过关检测-备战2024年中考数学一轮复习考点全预测(全国通用),文件包含专题11反比例函数综合过关检测-备战2024年中考数学一轮复习考点帮全国通用解析版docx、专题11反比例函数综合过关检测-备战2024年中考数学一轮复习考点帮全国通用考试版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。