2023-2024学年广东省梅州市五华县数学九年级第一学期期末教学质量检测试题含答案
展开这是一份2023-2024学年广东省梅州市五华县数学九年级第一学期期末教学质量检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,抛物线的顶点坐标是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是( )
A.B.
C.D.
2.在Rt△ABC中,∠C=90°,若AC=4,AB=5,则csB的值( )
A.B.C.D.
3.下列几何体中,同一个几何体的主视图与左视图不同的是( )
A.B.C.D.
4.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为( )
A.2B.2C.D.2
5.如图,矩形ABCD中,AB=4,AD=8,E为BC的中点,F为DE上一动点,P为AF中点,连接PC,则PC的最小值是( )
A.4B.8C.2D.4
6.抛物线的顶点坐标是( )
A.(2,9)B.(2,-9)
C.(-2,9)D.(-2,-9)
7.已知一个圆锥的母线长为30 cm,侧面积为300πcm,则这个圆锥的底面半径为( )
A.5 cmB.10 cmC.15 cmD.20 cm
8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a-b+c>0;④m>-2,其中,正确的个数有
A.1个B.2个C.3个D.4个
9.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则△PQD的面积为( )
A.B.C.D.
10.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象的形状大致是( )
A.B.
C.D.
11.下面四组图形中,必是相似三角形的为( )
A.两个直角三角形
B.两条边对应成比例,一个对应角相等的两个三角形
C.有一个角为40°的两个等腰三角形
D.有一个角为100°的两个等腰三角形
12.已知反比例函数图象如图所示,下列说法正确的是( )
A.
B.随的增大而减小
C.若矩形面积为2,则
D.若图象上两个点的坐标分别是,,则
二、填空题(每题4分,共24分)
13.已知x1,x2是关于x的方程x2﹣kx+3=0的两根,且满足x1+x2﹣x1x2=4,则k的值为_____.
14.若二次函数的图像在x轴下方的部分沿x轴翻折到x轴上方,图像的其余部分保持不变,翻折后的图像与原图像x轴上方的部分组成一个形如“W”的新图像,若直线y=-2x+b与该新图像有两个交点,则实数b的取值范围是__________
15.如图是反比例函数在第二象限内的图像,若图中的矩形OABC的面积为2,则k=________.
16.如图,等腰直角的顶点在正方形的对角线上,所在的直线交于点,交于点,连接,. 下列结论中,正确的有_________ (填序号).
①;②是的一个三等分点;③;④;⑤.
17.如图,边长为4的正六边形内接于,则的内接正三角形的边长为______________.
18.如果∠A是锐角,且sinA= ,那么∠A=________゜.
三、解答题(共78分)
19.(8分)计算的值.
20.(8分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,4)、B(-4,n)两点.
(1)分别求出一次函数与反比例函数的表达式;
(2)根据所给条件,请直接写出不等式kx+b>的解集 ;
(3)过点B作BC⊥x轴,垂足为点C,连接AC,求S△ABC.
21.(8分)如图,若b是正数.直线l:y=b与y轴交于点A,直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.
(1)若AB=6,求b的值,并求此时L的对称轴与a的交点坐标;
(2)当点C在l下方时,求点C与l距离的最大值;
(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;
(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.
22.(10分)已知二次函数(k是常数)
(1)求此函数的顶点坐标.
(2)当时,随的增大而减小,求的取值范围.
(3)当时,该函数有最大值,求的值.
23.(10分)某校综合实践小组要对一幢建筑物的高度进行测量.如图,该小组在一斜坡坡脚处测得该建筑物顶端的仰角为,沿斜坡向上走到达处,(即)测得该建筑物顶端的仰角为.已知斜坡的坡度,请你计算建筑物的高度(即的长,结果保留根号).
24.(10分)已知函数,(m,n,k为常数且≠0)
(1)若函数的图像经过点A(2,5),B(-1,3)两个点中的其中一个点,求该函数的表达式.
(2)若函数,的图像始终经过同一个定点M.
①求点M的坐标和k的取值
②若m≤2,当-1≤x≤2时,总有≤,求m+n的取值范围.
25.(12分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上(每个小方格都是边长为一个单位长度的正方形).
(1)请画出△ABC关于原点对称的△A1B1C1;
(1)请画出△ABC绕点B逆时针旋转90°后的△A1B1C1.
26.(12分)解方程
(1)7x2-49x=0; (2)x2-2x-1=0.
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、A
4、B
5、D
6、A
7、B
8、C
9、D
10、C
11、D
12、D
二、填空题(每题4分,共24分)
13、2
14、
15、-1
16、①②④
17、
18、1
三、解答题(共78分)
19、
20、(1);;(2)或;(3)6
21、(1)L的对称轴x=1.5,L的对称轴与a的交点为(1.5,﹣1.5 );(2)1;(1);(4)b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.
22、(1);(2);(3)或
23、建筑物的高度为.
24、 (1);(2)①M(2,3),k=3;②
25、(1)见解析;(1)见解析
26、(1)x1=0,x2=7;(2),
相关试卷
这是一份广东省梅州市五华县2023-2024学年八年级上学期期末数学试题,共22页。试卷主要包含了考生务必保持答题卡的整洁等内容,欢迎下载使用。
这是一份广东省梅州市五华县2023-2024学年上学期八年级数学期中核心素养检测,共3页。
这是一份广东省梅州市五华县2023-2024学年数学九上期末统考试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。