陕西省咸阳市2023-2024学年数学九上期末经典模拟试题含答案
展开
这是一份陕西省咸阳市2023-2024学年数学九上期末经典模拟试题含答案,共8页。试卷主要包含了﹣2019的倒数的相反数是,方程是关于的一元二次方程,则等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=65°,∠ABC=68°,则∠A的度数为( ).
A.112°B.68°C.65°D.52°
2.主视图、左视图、俯视图分别为下列三个图形的物体是( )
A.B.C.D.
3.如图,已知A、B是反比例函数上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是( )
A.B.C.D.
4.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=1.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )
A.平均分不变,方差变大B.平均分不变,方差变小
C.平均分和方差都不变D.平均分和方差都改变
5.﹣2019的倒数的相反数是( )
A.﹣2019B.C.D.2019
6.如图,⊙O是△ABC的外接圆,连接OA、OB,∠C=40°,则∠OAB的度数为( )
A.30°B.40°C.50°D.80°
7.如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则( )
A.(50﹣2x)(30﹣x)=178×6
B.30×50﹣2×30x﹣50x=178×6
C.(30﹣2x)(50﹣x)=178
D.(50﹣2x)(30﹣x)=178
8.方程是关于的一元二次方程,则
A.B.C.D.
9.在一个不透明的箱子中有3张红卡和若干张绿卡,它们除了颜色外其他完全相同,通过多次抽卡试验后发现,抽到绿卡的概率稳定在75%附近,则箱中卡的总张数可能是( )
A.1张B.4张C.9张D.12张
10.如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若∠BCD=125°,则∠ADP的大小为( )
A.25°B.40°C.35°D.30°
二、填空题(每小题3分,共24分)
11.若函数是正比例函数,则__________.
12.如图,已知菱形ABCD的对角线AC、BD交于点O,,,则菱形ABCD的面积是________.
13.将抛物线向下平移个单位,那么所得抛物线的函数关系是________.
14.一个圆锥的母线长为10,高为6,则这个圆锥的侧面积是_______.
15.如图,∠AOB=90°,且OA、OB分别与反比例函数、的图象交于A、B两点,则tan∠OAB的值是______.
16.正五边形的每个内角为______度.
17.五角星是我们生活中常见的一种图形,如图五角星中,点C,D分别为线段AB的右侧和左侧的黄金分割点,已知黄金比为,且AB=2,则图中五边形CDEFG的周长为________.
18.方程和方程同解,________.
三、解答题(共66分)
19.(10分)如图,有三张不透明的卡片,除正面标记有不同数字外,其它均相同.将这三张卡片反面朝上洗匀后,从中随机抽取一张;放回洗匀后,再随机抽取一张.我们把第一次抽取的卡片上标记的数字记作,第二次抽取的卡片上标记的数字记作.
(1)写出为负数的概率;
(2)求使得一次函数的图象经过第二、三、四象限的概率.(用树状图或列表法求解)
20.(6分)如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.
(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.
21.(6分)已知:PA=,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.
(1)如图,当∠APB=45°时,求AB及PD的长;
(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.
22.(8分)
23.(8分)如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:≈1.41,≈1.73,≈2.45)
24.(8分)已知抛物线的对称轴是直线,与轴相交于,两点(点在点右侧),与轴交于点.
(1)求抛物线的解析式和,两点的坐标;
(2)如图,若点是抛物线上、两点之间的一个动点(不与、重合),是否存在点,使四边形的面积最大?若存在,求点的坐标及四边形面积的最大值;若不存在,请说明理由.
25.(10分)抛物线与轴交于A,B两点,与轴交于点C,连接BC.
(1)如图1,求直线BC的表达式;
(2)如图1,点P是抛物线上位于第一象限内的一点,连接PC,PB,当△PCB面积最大时,一动点Q从点P从出发,沿适当路径运动到轴上的某个点G处,再沿适当路径运动到轴上的某个点H处,最后到达线段BC的中点F处停止,求当△PCB面积最大时,点P的坐标及点Q在整个运动过程中经过的最短路径的长;
(3)如图2,在(2)的条件下,当△PCB面积最大时,把抛物线向右平移使它的图象经过点P,得到新抛物线,在新抛物线上,是否存在点E,使△ECB的面积等于△PCB的面积.若存在,请求出点E的坐标,若不存在,请说明理由.
26.(10分)如图,已知二次函数的图象经过点.
(1)求的值和图象的顶点坐标。
(2)点在该二次函数图象上.
①当时,求的值;
②若到轴的距离小于2,请根据图象直接写出的取值范围.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、A
3、A
4、B
5、C
6、C
7、A
8、D
9、D
10、C
二、填空题(每小题3分,共24分)
11、
12、
13、
14、80π
15、
16、1
17、
18、
三、解答题(共66分)
19、(1);(2)
20、(1)抛物线的解析式为y=﹣x2﹣2x+1;(2)当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,1).
21、(1),;(2)的最大值为1
22、
23、此时快艇与岛屿C的距离是20nmile.
24、(1)抛物线的解析式为:;点的坐标为,点的坐标为;(2)存在点,使四边形的面积最大;点的坐标为,四边形面积的最大值为32.
25、(1)(2)点Q按照要求经过的最短路径长为(3)存在,满足条件的点E有三个,即(,),(,), (,)
26、(1);(2)① 11;②.
相关试卷
这是一份陕西省西安市航天中学2023-2024学年九上数学期末经典模拟试题含答案,共7页。试卷主要包含了如图,△OAB∽△OCD,OA等内容,欢迎下载使用。
这是一份陕西省咸阳市陕科大2023-2024学年九上数学期末综合测试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,方程x2﹣3x=0的根是,4的平方根是,已知,则的值是等内容,欢迎下载使用。
这是一份2023-2024学年陕西省西安市名校九上数学期末经典模拟试题含答案,共7页。试卷主要包含了抛物线y=x2﹣4x+2不经过等内容,欢迎下载使用。