贵州省安顺市第五中学2023-2024学年数学九年级第一学期期末达标检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.在平面直角坐标系中,若干个半径为1的单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,向右沿这条曲线做上下起伏运动(如图),点P在直线上运动的速度为每1个单位长度.点P在弧线上运动的速度为每秒个单位长度,则2019秒时,点P的坐标是( )
A.B.
C.D.
2.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是( )
A.B.C.D.
3.在函数中,自变量x的取值范围是( )
A.x>0B.x≥﹣4C.x≥﹣4且x≠0D.x>0且x≠﹣1
4.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )
A.B.C.D.
5.已知是一元二次方程的解,则的值为( )
A.-5B.5C.4D.-4
6.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( )
A.B.C.D.
7.关于x的方程3x2﹣2x+1=0的根的情况是( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.没有实数根 D.不能确定
8.sin60°的值是( )
A.B.C.D.
9.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是( )
A.k>B.k≥C.k>且k≠1D.k≥且k≠1
10.三角形两边的长分别是8和6,第三边的长是一元二次方程的一个实数根,则该三角形的面积是
A.24B.24或C.48或D.
二、填空题(每小题3分,共24分)
11.如图,△ABC中,∠ACB=90°,∠A=30°,BC=1,CD是△ABC的中线,E是AC上一动点,将△AED沿ED折叠,点A落在点F处,EF线段CD交于点G,若△CEG是直角三角形,则CE=____.
12.若,则=___________.
13.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.
14.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线 图象上的概率为__.
15.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于E.则直线CD与⊙O的位置关系是_______ ,阴影部分面积为(结果保留π) ________.
16.将抛物线向上平移1个单位后,再向左平移2个单位,得一新的抛物线,那么新的抛物线的表达式是__________________________.
17.光线从空气射入水中会发生折射现象,发生折射时,满足的折射定律如图①所示:折射率(代表入射角,代表折射角).小明为了观察光线的折射现象,设计了图②所示的实验;通过细管可以看见水底的物块,但从细管穿过的直铁丝,却碰不上物块,图③是实验的示意图,点A,C,B在同一直线上,测得,则光线从空射入水中的折射率n等于________.
18.圆锥的底面半径是4,母线长是9,则它的侧面展开图的圆心角的度数为______ .
三、解答题(共66分)
19.(10分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)
20.(6分)如图,在正方形ABCD中,等边△AEF的顶点E、F分别在BC和CD上.
(1)、求证:△ABE≌△ADF;
(2)、若等边△AEF的周长为6,求正方形ABCD的边长.
21.(6分)如图,为正方形对角线上一点,以为圆心,长为半径的与相切于点.
(1)求证:与相切.
(2)若正方形的边长为1,求半径的长.
22.(8分)已知ΔABC在平面直角坐标系中的位置如图所示.
(1)分别写出图中点A和点C的坐标;
(2)画出ΔABC绕点C按顺时针方向旋转;90°后的.
23.(8分)已知抛物线y=x2﹣2ax+m.
(1)当a=2,m=﹣5时,求抛物线的最值;
(2)当a=2时,若该抛物线与坐标轴有两个交点,把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,请判断k的取值情况,并说明理由;
(3)当m=0时,平行于y轴的直线l分别与直线y=x﹣(a﹣1)和该抛物线交于P,Q两点.若平移直线l,可以使点P,Q都在x轴的下方,求a的取值范围.
24.(8分)如图在直角坐标系中△ABC的顶点A、B、C三点坐标为A(7,1),B(8,2),C(9,0).
(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A'B'C'(要求与△ABC在P点同一侧);
(2)直接写出A'点的坐标;
(3)直接写出△A'B'C'的周长.
25.(10分)已知在中,,,,为边上的一点.过点作射线,分别交边、于点、.
(1)当为的中点,且、时,如图1,_______:
(2)若为的中点,将绕点旋转到图2位置时,_______;
(3)若改变点到图3的位置,且时,求的值.
26.(10分)网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、C
4、C
5、B
6、D
7、C
8、C
9、C
10、B
二、填空题(每小题3分,共24分)
11、或
12、
13、
14、
15、相切 6-π
16、y=(x+2)2-1
17、
18、
三、解答题(共66分)
19、(5)(60≤x≤76);(6)当销售单价定为76元时,每月可获得最大利润,最大利润是6560元;(7)5.
20、(1)证明见解析;(2).
21、(1)见解析;(2)
22、(1)A(0,4),C(3,1);(2)详见解析
23、(3)-3;(2)k>2,见解析;(3)a>3或a<﹣3
24、(1)见解析;(2)A′(﹣3,3),B′(0,6),C′(0,3);(3).
25、(1)2;(2)2;(3)
26、2017年至2019年“双十一”交易额的年平均增长率为20%.
贵州省7月普通高中学2023-2024学年数学九年级第一学期期末达标检测试题含答案: 这是一份贵州省7月普通高中学2023-2024学年数学九年级第一学期期末达标检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,正八边形的中心角为,下列图形等内容,欢迎下载使用。
2023-2024学年贵州省水城实验学校数学九年级第一学期期末达标检测模拟试题含答案: 这是一份2023-2024学年贵州省水城实验学校数学九年级第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年贵州省毕节织金县数学九年级第一学期期末达标检测模拟试题含答案: 这是一份2023-2024学年贵州省毕节织金县数学九年级第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,有一组数据,点关于原点的对称点是,27的立方根是等内容,欢迎下载使用。