湖南省长沙市青竹湖湘一外国语学校2023-2024学年九年级数学第一学期期末考试试题含答案
展开这是一份湖南省长沙市青竹湖湘一外国语学校2023-2024学年九年级数学第一学期期末考试试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,若,则的值是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.一组数据0、-1、3、2、1的极差是( )
A.4B.3C.2D.1
2.如图,已知正五边形内接于,连结,则的度数是( )
A.B.C.D.
3.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )
A.B.C.D.
4.已知一个矩形的面积为24cm2,其长为ycm,宽为xcm,则y与x之间的函数关系的图象大致是
A.B.C.D.
5.如图,各正方形的边长均为1,则四个阴影三角形中,一定相似的一对是( )
A.①②B.①③C.②③D.③④
6.将抛物线向左平移3个单位长度,再向上平移5个单位长度,得到的抛物线的表达式为( )
A.B.
C.D.
7.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( )
A.m<1B.m>﹣1C.m>1D.m<﹣1
8.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:(单位:个)33,25,28,26,25,31,如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为( )
A.900个B.1080个C.1260个D.1800个
9.如图,,两条直线与这三条平行线分别交于点、、和、、,若,则的值为( )
A.B.C.D.
10.若,则的值是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.把二次函数变形为的形式为_________.
12.一元二次方程的两实数根分别为,计算的值为__________.
13.如图,点C是以AB为直径的半圆上一个动点(不与点A、B重合),且AC+BC=8,若AB=m(m为整数),则整数m的值为______.
14.如图,在大楼AB的楼顶B处测得另一栋楼CD底部C的俯角为60度,已知A、C两点间的距离为15米,那么大楼AB的高度为_____米.(结果保留根号)
15.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则的面积为_____________.
16.为了解早高峰期间A,B两邻近地铁站乘客的乘车等待时间(指乘客从进站到乘上车的时间),某部门在同一上班高峰时段对A、B两地铁站各随机抽取了500名乘客,收集了其乘车等待时间(单位:分钟)的数据,统计如表:
据此估计,早高峰期间,在A地铁站“乘车等待时间不超过15分钟”的概率为_____;夏老师家正好位于A,B两地铁站之间,她希望每天上班的乘车等待时间不超过20分钟,则她应尽量选择从_____地铁站上车.(填“A”或“B”)
17.一个直角三角形的两直角边长分别为和,则这个直角三角形的面积是_____cm1.
18.如图,⊙O的半径为4,点B是圆上一动点,点A为⊙O内一定点,OA=4,将AB绕A点顺时针方向旋转120°到AC,以AB、BC为邻边作▱ABCD,对角线AC、BD交于E,则OE的最大值为_____.
三、解答题(共66分)
19.(10分)一件商品进价100元,标价160元时,每天可售出200件,根据市场调研,每降价1元,每天可多售出10件,反之,价格每提高1元,每天少售出10件.以160元为基准,标价提高m元后,对应的利润为w元.
(1)求w与m之间的关系式;
(2)要想获得利润7000元,标价应为多少元?
20.(6分)某商场销售一种商品,若将50件该商品按标价打八折销售,比按原标价销售这些商品少获利200元.
求该商品的标价为多少元;
已知该商品的进价为每件12元,根据市场调查:若按中标价销售,该商场每天销售100件;每涨1元,每天要少卖5件那么涨价后要使该商品每天的销售利润最大,应将销售价格定为每件多少元?最大利润是多少?
21.(6分)如图,△ABC是一块锐角三角形余料,边BC=120 mm,高AD=80mm,要把它加工成矩形零件PQMN,使矩形PQMN的边QM在BC上,其余两个项点P,N分别在AB,AC上.
(1)当矩形的边PN=PQ时,求此时矩形零件PQMN的面积;
(2)求这个矩形零件PQMN面积S的最大值.
22.(8分)某校组织了一次七年级科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图①和图②两幅尚不完整的统计图中.
(1)B班参赛作品有多少件?
(2)请你将图②的统计图补充完整;
(3)通过计算说明,哪个班的获奖率高?
23.(8分)如图,已知△ABC的顶点A、B、C的坐标分别是A(﹣1,﹣1)、B(﹣4,﹣3)、C(﹣4,﹣1).
(1)画出△ABC关于原点O中心对称的图形△A1B1C1;
(2)将△ABC绕点A按顺时针方向旋转90°后得到△AB2C2,画出△AB2C2并求线段AB扫过的面积.
24.(8分)如图,已知二次函数的顶点为(2,),且图象经过A(0,3),图象与x轴交于B、C两点.
(1)求该函数的解析式;
(2)连结AB、AC,求△ABC面积.
25.(10分)如图,在△ABC中,∠ACB=90º,∠ABC=45 º,点O是AB的中点,过A、C两点向经过点O的直线作垂线,垂足分别为E、F.
(1)如图①,求证:EF=AE+CF.
(2)如图②,图③,线段EF、AE、CF之间又有怎样的数量关系?请直接写出你的猜想.
26.(10分)请回答下列问题.
(1)计算:
(2)解方程:
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、D
4、D
5、A
6、A
7、C
8、C
9、C
10、B
二、填空题(每小题3分,共24分)
11、
12、-10
13、6或1
14、
15、1
16、 B
17、
18、2+2
三、解答题(共66分)
19、(1)w=﹣1m2﹣400m+12000(0≤m≤20);(2)标价应为11元或170元.
20、(1)20;(2)26,980.
21、(1)矩形零件PQMN的面积为2304mm2;(2)这个矩形零件PQMN面积S的最大值是2400mm2.
22、(1)B班参赛作品有25件;(2)补图见解析;(3)C班的获奖率高.
23、(1)见解析;(2)
24、(1);(2).
25、(1)见解析;(2)图②:EF=AE+CF 图③:EF=AE-CF,见解析
26、(1)-4;(2),.
等待时的频数间
乘车等待时间
地铁站
5≤t≤10
10<t≤15
15<t≤20
20<t≤25
25<t≤30
合计
A
50
50
152
148
100
500
B
45
215
167
43
30
500
相关试卷
这是一份2023-2024学年湖南省长沙市开福区青竹湖湘一外国语学校九上数学期末达标测试试题含答案,共8页。试卷主要包含了若,则等内容,欢迎下载使用。
这是一份2023-2024学年湖南省长沙市青竹湖湘一外国语学校数学九上期末调研试题含答案,共8页。试卷主要包含了答题时请按要求用笔,根据下面表格中的对应值等内容,欢迎下载使用。
这是一份2023-2024学年湖南省长沙市青竹湖湘一外国语学校数学九上期末经典模拟试题含答案,共7页。试卷主要包含了三角形的内心是,已知二次函数y=mx2+x+m等内容,欢迎下载使用。