浙江省(温州)2023-2024学年九年级数学第一学期期末综合测试试题含答案
展开
这是一份浙江省(温州)2023-2024学年九年级数学第一学期期末综合测试试题含答案,共7页。试卷主要包含了下列说法正确的是,若. 则下列式子正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1. “圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为的直径,弦,垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )
A.12寸B.13寸C.24寸D.26寸
2.学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是( )
A.B.C.D.
3.二次函数y=x2的图象向左平移1个单位,再向下平移3个单位后,所得抛物线的函数表达式是( )
A.y=+3B.y=+3
C.y=﹣3D.y=﹣3
4.如图,从一块直径为24cm的圆形纸片上,剪出一个圆心角为90°的扇形ABC,使点A,B,C都在圆周上,将剪下的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径是( )
A.3 cmB.2cmC.6cmD.12cm
5.下列说法正确的是( )
A.“清明时节雨纷纷”是必然事件
B.要了解路边行人边步行边低头看手机的情况,可采取对在路边行走的学生随机发放问卷的方式进行调查
C.做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55
D.射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较好
6.已知△ABC的外接圆⊙O,那么点O是△ABC的( )
A.三条中线交点B.三条高的交点
C.三条边的垂直平分线的交点D.三条角平分线交点
7.下列四个点中,在反比例函数的图象上的是( )
A.(3,﹣2)B.(3,2)C.(2,3)D.(﹣2,﹣3)
8.如图,△ABC是一块锐角三角形材料,高线AH长8 cm,底边BC长10 cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的最大面积为( )
A.40 cm2B.20 cm2
C.25 cm2D.10 cm2
9.若. 则下列式子正确的是( )
A.B.C.D.
10.在平面直角坐标系中,二次函数的图象可能是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,在中,,,将绕顶点顺时针旋转,得到,点、分别与点、对应,边分别交边、于点、,如果点是边的中点,那么______.
12.______.
13.如图所示,某建筑物有一抛物线形的大门,小明想知道这道门的高度,他先测出门的宽度,然后用一根长为的小竹竿竖直的接触地面和门的内壁,并测得,则门高为__________.
14.抛物线y=3(x﹣2)2+5的顶点坐标是_____.
15.如图,OA、OB是⊙O的半径,CA、CB是⊙O的弦,∠ACB=35°,OA=2,则图中阴影部分的面积为_____.(结果保留π)
16.如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为_____.
17.如图,AB为半圆的直径,点D在半圆弧上,过点D作AB的平行线与过点A半圆的切线交于点C,点E在AB上,若DE垂直平分BC,则=______.
18.如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,则sinA=_____.
三、解答题(共66分)
19.(10分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:
(1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;
(2)若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.
20.(6分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,且与反比例函数在第一象限的图象交于点,轴于点,.
(1)求点的坐标;
(2)动点在轴上,轴交反比例函数的图象于点.若,求点的坐标.
21.(6分)已知关于的方程.
(1)求证:不论取何实数,该方程都有两个不相等的实数根;
(2)若该方程的一个根为,求该方程的另一个根.
22.(8分)若的整数部分为,小数部分为;
(1)直接写出_________,__________;
(2)计算的值.
23.(8分)如图,在中,,.
用直尺和圆规作,使圆心O在BC边,且经过A,B两点上不写作法,保留作图痕迹;
连接AO,求证:AO平分.
24.(8分)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到县城城南大道的距离为米的点处.这时,一辆出租车由西向东匀速行驶,测得此车从处行驶到处所用的时间为秒,且,.
求、之间的路程;
请判断此出租车是否超过了城南大道每小时千米的限制速度?
25.(10分)已知抛物线C1:y1=a(x﹣h)2+2,直线1:y2=kx﹣kh+2(k≠0).
(1)求证:直线l恒过抛物线C的顶点;
(2)若a>0,h=1,当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,求t的取值范围.
(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1≤k≤3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围.
26.(10分)如图,在中,点是弧的中点,于,于,求证:.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、D
4、A
5、C
6、C
7、A
8、B
9、A
10、A
二、填空题(每小题3分,共24分)
11、
12、
13、
14、(2,5).
15、
16、
17、
18、
三、解答题(共66分)
19、(1);(2).
20、(1);(2)或
21、(1)证明见解析;(2)另一根为-2.
22、(1),;(2).
23、 (1)作图见解析;(2)证明见解析.
24、(米);此车超过了每小时千米的限制速度.
25、(1)证明见解析;(2)﹣2≤t≤1;(3)﹣1<a<0或0<a<1.
26、证明见解析.
相关试卷
这是一份2023-2024学年浙江省温州市实验中学九年级数学第一学期期末综合测试试题含答案,共8页。试卷主要包含了在平面直角坐标系中,以点,已知下列命题等内容,欢迎下载使用。
这是一份2023-2024学年浙江省温州市瑞安市四校联考数学九年级第一学期期末综合测试试题含答案,共8页。试卷主要包含了方程的根的情况等内容,欢迎下载使用。
这是一份浙江省温州市平阳县2023-2024学年九上数学期末综合测试试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。