浙江省台州温岭市第三中学2023-2024学年数学九上期末考试试题含答案
展开
这是一份浙江省台州温岭市第三中学2023-2024学年数学九上期末考试试题含答案,共8页。试卷主要包含了下列事件是必然事件的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.下列方程是一元二次方程的是 ( )
A.B.x2+5=0C.x2+=8D.x(x+3)=x2﹣1
2.若点、、都在反比例函数的图象上,并且,则下列各式中正确的是( )
A.B.C.D.
3.下列图案中,是中心对称图形的是( )
A.B.C.D.
4.方程的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.有一个实数根D.没有实数根
5.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则( )
A.B.C.D.
6.对于反比例函数,下列说法不正确的是
A.图象分布在第二、四象限
B.当时,随的增大而增大
C.图象经过点(1,-2)
D.若点,都在图象上,且,则
7.,是的两条切线,,为切点,直线交于,两点,交于点,为的直径,下列结论中不正确的是( )
A.B.C.D.
8.下列事件是必然事件的是( )
A.打开电视播放建国70周年国庆阅兵式
B.任意翻开初中数学书一页,内容是实数练习
C.去领奖的三位同学中,其中有两位性别相同
D.食用保健品后长生不老
9.一个半径为2cm的圆的内接正六边形的面积是( )
A.24cm2B.6cm2C.12cm2D.8cm2
10.下列函数,当时,随着的增大而减小的是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.甲、乙两同学在最近的5次数学测验中数学成绩的方差分别为甲,乙,则数学成绩比较稳定的同学是____________
12.计算:﹣(﹣π)0+()﹣1=_____.
13.已知三点A(0,0),B(5,12),C(14,0),则△ABC内心的坐标为____.
14.在一个不透明的箱子中,共装有白球、红球、黄球共60个,这些球的形状、大小、质地等完全相同.小华通过多次试验后发现,从盒子中摸出红球的频率是15%,摸出白球的频率是45%,那么可以估计盒子中黄球的个数是_____.
15.如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是_____;
16.已知点P是线段AB的黄金分割点,AP>PB.若AB=1.则AP=__(结果保留根号).
17.如图,一人口的弧形台阶,从上往下看是一组同心圆被一条直线所截得的一组圆弧.已知每个台阶宽度为32cm(即相邻两弧半径相差32cm),测得AB=200cm,AC=BD=40cm,则弧AB所在的圆的半径为_______________cm
18.已知和时,多项式的值相等,则m的值等于 ______ .
三、解答题(共66分)
19.(10分)如图,在矩形中,点为原点,点的坐标为,点的坐标为,抛物线经过点、,与交于点.
备用图
⑴求抛物线的函数解析式;
⑵点为线段上一个动点(不与点重合),点为线段上一个动点,,连接,设,的面积为.求关于的函数表达式;
⑶抛物线的顶点为,对称轴为直线,当最大时,在直线上,是否存在点,使以、、、为顶点的四边形是平行四边形,若存在,请写出符合条件的点的坐标;若不存在,请说明理由.
20.(6分)已知抛物线经过点和 ,与轴交于另一点,顶点为.
(1)求抛物线的解析式,并写出点的坐标;
(2)如图,点分别在线段上(点不与重合),且,则能否为等腰三角形?若能,求出的长;若不能,请说明理由;
(3)若点在抛物线上,且,试确定满足条件的点的个数.
21.(6分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为B(3,4)、A(﹣3,2)、C(1,0),正方形网格中,每个小正方形的边长是一个单位长度.
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格上画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为1:2,点C2的坐标是 ;(画出图形)
(3)若M(a,b)为线段AC上任一点,写出点M的对应点M2的坐标 .
22.(8分)先化简,再求值:(1+)÷,其中a=1.
23.(8分)已知在平面直角坐标系中,一次函数y=x+b的图象与反比例函数y=的图象交于点A(1,m)和点B(-2,-1).
(1)求k,b的值;
(2)连结OA,OB,求△AOB的面积.
24.(8分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶5次,成绩统计如下表:
(1)甲、乙的平均成绩分别是多少?
(2)甲、乙这5次比赛的成绩的方差分别是多少?
(3)如果规定成绩较稳定者胜出,你认为谁应该胜出?说明你的理由;
(4)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?
25.(10分)已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.
(1)求证:△ABE∽△DEA;
(2)若AB=4,求AE•DE的值.
26.(10分)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上一点O为圆心,OB为半径作⊙O,交AC于点E,交AB于点D,且∠BEC=∠BDE.
(1)求证:AC是⊙O的切线;
(2)连接OC交BE于点F,若,求的值.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、C
4、A
5、A
6、D
7、B
8、C
9、B
10、D
二、填空题(每小题3分,共24分)
11、甲
12、1
13、(6,4).
14、1
15、
16、5﹣5
17、1
18、或1
三、解答题(共66分)
19、(1);(2);(3)点的坐标为,
20、(1);(2)可能,的长为或;(3)当时,满足条件的点的个数有个,当时,满足条件的点的个数有个,当时,满足条件的点的个数有个(此时点在的左侧).
21、(1)作图见解析,(1,-4);(2)作图见解析,(2,2);(3)(,)
22、化简为,值为
23、(1)k=2;b=1;(2)
24、(1)=8(环),=8(环);(2),;(3)甲胜出,理由见解析;(4)见解析.
25、(1)见解析;(2)2
26、(1)证明见解析;(2)
相关试卷
这是一份浙江省台州市温岭市五校联考2023-2024学年九上数学期末预测试题含答案,共9页。试卷主要包含了下列各组图形中,一定相似的是,如图,双曲线的一个分支为等内容,欢迎下载使用。
这是一份2023-2024学年浙江省台州市温岭市五校联考九上数学期末学业水平测试模拟试题含答案,共8页。
这是一份2023-2024学年浙江省台州市温岭市九上数学期末质量检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。