浙江省衢州市常山县2023-2024学年九年级数学第一学期期末质量检测模拟试题含答案
展开
这是一份浙江省衢州市常山县2023-2024学年九年级数学第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,﹣2的绝对值是,某反比例函数的图象经过点等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.下列条件中,能判断四边形是菱形的是( )
A.对角线互相垂直且相等的四边形
B.对角线互相垂直的四边形
C.对角线相等的平行四边形
D.对角线互相平分且垂直的四边形
2.不解方程,则一元二次方程的根的情况是( )
A.有两个相等的实数根B.没有实数根
C.有两个不相等的实数根D.以上都不对
3.对于二次函数y=2(x﹣1)2+2的图象,下列说法正确的是( )
A.开口向下B.对称轴是 x=﹣1
C.与 x 轴有两个交点D.顶点坐标是(1,2)
4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( )
A.B.C.D.
5.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率为( )
A.B.C.D.
6.﹣2的绝对值是( )
A.2B.C.D.
7.在一个不透明的盒子里装有个黄色、个蓝色和个红色的小球,它们除颜色外其他都完全相同,将小球摇匀后随机摸出一个球,摸出的小球为红色的概率为( )
A.B.C.D.
8.将二次函数y=5x2的图象先向右平移2个单位,再向下平移3个单位,得到的函数图象的解析式为( )
A.y=5(x+2)2+3B.y=5(x﹣2)2+3
C.y=5(x+2)2﹣3D.y=5(x﹣2)2﹣3
9.某反比例函数的图象经过点(-2,3),则此函数图象也经过( )
A.(2,-3)B.(-3,3)C.(2,3)D.(-4,6)
10.有甲、乙、丙、丁四架机床生产一种直径为20mm圆柱形零件,从各自生产的零件中任意抽取10件进行检测,得出各自的平均直径均为20mm,每架机床生产的零件的方差如表:
则在这四台机床中生产的零件最稳定的是( ).
A.甲B.乙C.丙D.丁
二、填空题(每小题3分,共24分)
11.对于为零的两个实数a,b,如果规定:a☆b=ab-b-1,那么x☆(2☆x)=0中x值为____.
12.矩形的一条对角线长为26,这条对角线与矩形一边夹角的正弦值为,那么该矩形的面积为___.
13.如图,半径为的⊙O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则sin∠OCB=___________.
14.如图,在矩形中,是上的点,点在上,要使与相似,需添加的一个条件是_______(填一个即可).
15.如图,在△ABC中,点DE分别在ABAC边上,DE∥BC,∠ACD=∠B,若AD=2BD,BC=6.则线段CD的长为______
16.如图,点的坐标为,过点作轴的垂线交过原点与轴夹角为的直线于点,以原点为圆心,的长为半径画弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,以的长为半径画弧交轴正半轴于点……按此做法进行下去,则点的坐标是_____.
17.已知:,且y≠4,那么=______.
18.若等腰三角形的两边长恰为方程的两实数根,则的周长为________________.
三、解答题(共66分)
19.(10分)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).
20.(6分)非洲猪瘟疫情发生以来,猪肉市场供应阶段性偏紧和猪价大幅波动时有发生,为稳定生猪生产,促进转型升级,增强猪肉供应保障能力,国务院办公厅于2019年9月印发了《关于稳定生猪生产促进转型升级的意见》,某生猪饲养场积极响应国家号召,努力提高生产经营管理水平,稳步扩大养殖规模,增加猪肉供应量。该饲养场2019年每月生猪产量y(吨)与月份x(,且x为整数)之间的函数关系如图所示.
(1)请直接写出当(x为整数)和(x为整数)时,y与x的函数关系式;
(2)若该饲养场生猪利润P(万元/吨)与月份x(,且x为整数)满足关系式:,请问:该饲养场哪个月的利润最大?最大利润是多少?
21.(6分)某学校的学生为了对小雁塔有基本的认识,在老师的带领下对小雁塔进行了测量.测量方法如下:如图,间接测得小雁塔地部点D到地面上一点E的距离为115.2米,小雁塔的顶端为点B,且BD⊥DE,在点E处竖直放一个木棒,其顶端为C,CE=1.72米,在DE的延长线上找一点A,使A、C、B三点在同一直线上,测得AE=4.8米.求小雁塔的高度.
22.(8分)已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.
(1)求证:∠DAC=∠DBA;
(2)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.
23.(8分)如图,已知是等边三角形的外接圆,点在圆上,在的延长线上有一点,使,交于点.
(1)求证:是的切线
(2)若,求的长
24.(8分)如图,平面直角坐标系内,二次函数的图象经过点,与轴交于点.
求二次函数的解析式;
点为轴下方二次函数图象上一点,连接,若的面积是面积的一半,求点坐标.
25.(10分)为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会.某公司研发生产一种新型智能环保节能灯,成本为每件40元.市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元.
(1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;
(2)设该公司日销售利润为P元,求每天的最大销售利润是多少元?
(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴m(m≤40)元.在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是 (直接写出结果).
26.(10分)如图,点E为□ABCD中一点,EA=ED,∠AED=90º,点F,G分别为AB,BC上的点,连接DF,AG,AD=AG=DF,且AG⊥DF于点H,连接EG,DG,延长AB,DG相交于点P.
(1)若AH=6,FH=2,求AE的长;
(2)求证:∠P=45º;
(3)若DG=2PG,求证:∠AGE=∠EDG.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、D
4、B
5、D
6、A
7、D
8、D
9、A
10、A
二、填空题(每小题3分,共24分)
11、0或2
12、240
13、
14、或∠BAE=∠CEF,或∠AEB=∠EFC(任填一个即可)
15、
16、
17、
18、1
三、解答题(共66分)
19、32.2m.
20、(1)(,x为整数) , (,x为整数);(2)该饲养场一月份的利润最大,最大利润是203万元
21、43 m.
22、(1)见解析;(2)⊙O的半径为2.5;DE=2.1.
23、(1)证明见解析;(2)1
24、(1);(2)点坐标为或
25、(1)y=﹣x+70,自变量x的取值范围1000≤x≤2500;见解析;(2)每天的最大销售利润是22500元;见解析;(3)20≤m≤1.
26、(1);(2)见详解;(3)见详解
机床型号
甲
乙
丙
丁
方差mm2
0.012
0.020
0.015
0.102
相关试卷
这是一份浙江省衢州市2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了下列关于一元二次方程,将一副三角尺,若,则的值为等内容,欢迎下载使用。
这是一份浙江省衢州市六校联谊2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,已知关于的方程个等内容,欢迎下载使用。
这是一份2023-2024学年浙江省衢州市Q21教联盟八年级数学第一学期期末教学质量检测模拟试题含答案,共6页。试卷主要包含了下列交通标志是轴对称图形的是,在平面直角坐标系中,点P等内容,欢迎下载使用。