河北省正定县2023-2024学年数学九上期末经典试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣(t﹣4)2+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为( )
A.3sB.4sC.5sD.6s
2.三角形的两边分别2和6,第三边是方程x2-10x+21=0的解,则三角形周长为( )
A.11B.15C.11或15D.不能确定
3.已知,则=( )
A.B.C.D.
4.如图,正五边形ABCD内接于⊙O,连接对角线AC,AD,则下列结论:①BC∥AD;②∠BAE=3∠CAD;③△BAC≌△EAD;④AC=2CD.其中判断正确的是( )
A.①③④B.①②③C.①②④D.①②③④
5.一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有个( )
A.45B.48C.50D.55
6.下列方程中,是一元二次方程的是( )
A.x+=0B.ax2+bx+c=0C.x2+1=0D.x﹣y﹣1=0
7.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F.P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是( )
A.4-B.4-C.8-D.8-
8.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是( ).
A.B.C.D.
9.若反比例函数的图像在第二、四象限,则它的解析式可能是( )
A.B.C.D.
10.按如图所示的运算程序,输入的 的值为,那么输出的 的值为( )
A.1B.2C.3D.4
二、填空题(每小题3分,共24分)
11.化简:__________.
12.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ABC的面积为_______________________
13.若△ABC∽△A′B′C′,且,△ABC的周长为12cm,则△A′B′C′的周长为_____________.
14.方程x2+2x﹣1=0配方得到(x+m)2=2,则m=_____.
15.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_____cm.
16.已知,且 ,且与的周长和为175 ,则的周长为 _________.
17.如图,某小区规划在一个长30 m、宽20 m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78 m2,那么通道的宽应设计成多少m?设通道的宽为x m,由题意列得方程____________
18.若A(-2,a),B(1,b),C(2,c)为二次函数的图象上的三点,则a,b,c的大小关系是__________________.(用“<”连接)
三、解答题(共66分)
19.(10分)如图①,在中,,,D是BC的中点.
小明对图①进行了如下探究:在线段AD上任取一点P,连接PB,将线段PB绕点P按逆时针方向旋转,点B的对应点是点E,连接BE,得到.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:
(1)当点E在直线AD上时,如图②所示.
① ;②连接CE,直线CE与直线AB的位置关系是 .
(2)请在图③中画出,使点E在直线AD的右侧,连接CE,试判断直线CE与直线AB的位置关系,并说明理由.
(3)当点P在线段AD上运动时,求AE的最小值.
20.(6分)如图示,在平面直角坐标系中,二次函数()交轴于,,在轴上有一点,连接.
(1)求二次函数的表达式;
(2)点是第二象限内的点抛物线上一动点
①求面积最大值并写出此时点的坐标;
②若,求此时点坐标;
(3)连接,点是线段上的动点.连接,把线段绕着点顺时针旋转至,点是点的对应点.当动点从点运动到点,则动点所经过的路径长等于______(直接写出答案)
21.(6分)已知抛物线与轴的两个交点是点,(在的左侧),与轴的交点是点.
(1)求证:,两点中必有一个点坐标是;
(2)若抛物线的对称轴是,求其解析式;
(3)在(2)的条件下,抛物线上是否存在一点,使?如果存在,求出点的坐标;如果不存在,请说明理由.
22.(8分)2019年11月26日,鲁南高铁正式开通运营.鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,,∠ABD=105°,求AD的长.
23.(8分)如图,在平行四边形ABCD中,CE是∠DCB的角平分线,且交AB于点E,DB与CE相交于点O,
(1)求证:△EBC是等腰三角形;
(2)已知:AB=7,BC=5,求的值.
24.(8分)先化简,再求值:(x-1)÷(x-),其中x =+1
25.(10分)如图,海中有两个小岛,,某渔船在海中的处测得小岛D位于东北方向上,且相距,该渔船自西向东航行一段时间到达点处,此时测得小岛恰好在点的正北方向上,且相距,又测得点与小岛相距.
(1)求的值;
(2)求小岛,之间的距离(计算过程中的数据不取近似值).
26.(10分)某校九年级学生参加了中考体育考试.为了了解该校九年级(1)班同学的中考体育成绩情况,对全班学生的中考体育成绩进行了统计,并绘制出以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:
(1)m的值为 ;
(2)该班学生中考体育成绩的中位数落在 组;(在A、B、C、D、E中选出正确答案填在横线上)
(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、B
4、B
5、A
6、C
7、B
8、D
9、A
10、D
二、填空题(每小题3分,共24分)
11、0
12、3
13、16 cm
14、1
15、1.
16、1
17、(30-2x)(20-x)=6×1.
18、a<b<c
三、解答题(共66分)
19、(1)①50;②;(2);(3)AE的最小值.
20、(1);(2)①,点坐标为;②;(3)
21、(1)见解析;(2);(3)或
22、2()km
23、(1)证明见解析(1)
24、1+
25、 (1);(2)小岛、相距.
26、(1)18;(2)D组;(3)图表见解析,
分组
分数段(分)
频数
A
36≤x<41
2
B
41≤x<46
5
C
46≤x<51
15
D
51≤x<56
m
E
56≤x<61
10
河北省滦南县2023-2024学年九上数学期末经典模拟试题含答案: 这是一份河北省滦南县2023-2024学年九上数学期末经典模拟试题含答案,共8页。试卷主要包含了已知点P是线段AB的黄金分割点,下列事件中是必然发生的事件是,反比例函数的图象分布的象限是,方程x2=4的解是等内容,欢迎下载使用。
河北省承德市隆化县2023-2024学年九上数学期末经典模拟试题含答案: 这是一份河北省承德市隆化县2023-2024学年九上数学期末经典模拟试题含答案,共8页。试卷主要包含了抛物线的顶点坐标是等内容,欢迎下载使用。
河北省邢台市2023-2024学年九上数学期末经典试题含答案: 这是一份河北省邢台市2023-2024学年九上数学期末经典试题含答案,共7页。试卷主要包含了已知,若,则它们的周长之比是,抛物线 y=等内容,欢迎下载使用。