江苏省连云港市海州区新海实验中学2023-2024学年九上数学期末调研试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.已知线段MN=4cm,P是线段MN的黄金分割点,MP>NP,那么线段MP的长度等于( )
A.(2+2)cmB.(2﹣2)cmC.(+1)cmD.(﹣1)cm
2.如图,某中学计划靠墙围建一个面积为的矩形花圃(墙长为),围栏总长度为,则与墙垂直的边为( )
A.或B.C.D.
3.设计一个摸球游戏,先在一个不透明的盒子中放入个白球,如果希望从中任意摸出个球是白球的概率为,那么应该向盒子中再放入多少个其他颜色的球.(游戏用球除颜色外均相同)( )
A.B.C.D.
4.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是( )
A.30°B.40°C.50°D.60°
5.在下列函数图象上任取不同两点,,一定能使成立的是( )
A.B.
C.D.
6.方程的根的情况( )
A.有两个相等的实数根B.没有实数根
C.有两个不相等的实数根D.有两个实数根
7.如图.已知的半径为3,,点为上一动点.以为边作等边,则线段的长的最大值为( )
A.9B.11C.12D.14
8.已知点,在双曲线上.如果,而且,则以下不等式一定成立的是( )
A.B.C.D.
9.若一元二次方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是( )
A.k=﹣1B.k≥﹣1且k≠0C.k>﹣1且k≠0D.k≤﹣1且k≠0
10.如图,在菱形ABCD中,AC与BD相交于点O,AC=8,BD=6,则菱形的周长等于( )
A.40B.C.24D.20
二、填空题(每小题3分,共24分)
11.已知∠A=60°,则tanA=_____.
12.如图,正方形的边长为,在边上分别取点,,在边上分别取点,使.....依次规律继续下去,则正方形的面积为__________.
13.已知正方形ABCD边长为4,点P为其所在平面内一点,PD=,∠BPD=90°,则点A到BP的距离等于_____.
14.已知扇形的圆心角为120°,弧长为6π,则它的半径为________.
15.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.
16.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.
17.某中学为了了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是________.
18.已知是一张等腰直角三角形板,,要在这张纸板中剪取正方形(剪法如图1所示),图1中剪法称为第次剪取,记所得的正方形面积为;按照图1中的剪法,在余下的和中,分别剪取两个全等正方形,称为第次剪取,并记这两个正方形面积和为,(如图2) ;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第次剪取,并记这四个正方形的面积和为,(如图3);继续操作下去···则第次剪取后, ___________.
三、解答题(共66分)
19.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.
(1)求证:DE是⊙O的切线;
(2)若AD=16,DE=10,求BC的长.
20.(6分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.
(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?
(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.
21.(6分)已知关于的一元二次方程.
(1)求证:方程总有两个实数根;
(2)若方程有一个根为负数,求的取值范围.
22.(8分)某校为了丰富学生课余生活,计划开设以下社团:A.足球、B.机器人、C.航模、D.绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目.
(1)求小亮选择“机器人”社团的概率为______;
(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.
23.(8分)如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB=20米,顶点M距水面6米(即MO=6米),小孔水面宽度BC=6米,顶点N距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:
(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.
(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.
24.(8分)先化简,再求值:,其中a=3,b=﹣1.
25.(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).
(1)求一次函数y=kx+b的解析式;
(2)求△BOC的面积;
(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为 .
26.(10分)如图,ABCD是一块边长为4米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在AD的延长线上,DG = 2BE.设BE的长为x米,改造后苗圃AEFG的面积为y平方米.
(1)求y与x之间的函数关系式(不需写自变量的取值范围);
(2)根据改造方案,改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,请问此时BE的长为多少米?
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、A
4、C
5、B
6、B
7、B
8、B
9、B
10、D
二、填空题(每小题3分,共24分)
11、
12、
13、或
14、1
15、1.
16、3.
17、1人
18、
三、解答题(共66分)
19、(1)证明见解析;(2)15.
20、(1);(2).
21、(1)见解析;(2)
22、(1);(2);
23、(1)巡逻船能安全通过大孔,理由见解析;(2)小船不能安全通过小孔,理由见解析.
24、,.
25、(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).
26、(1)y=-2x+4x+16;(2)2米
2023-2024学年江苏省连云港市新海实验中学数学九上期末统考试题含答案: 这是一份2023-2024学年江苏省连云港市新海实验中学数学九上期末统考试题含答案,共7页。试卷主要包含了下列四种说法,将二次函数化为的形式,结果为等内容,欢迎下载使用。
江苏省连云港市海州区新海实验中学2023-2024学年数学八年级第一学期期末调研试题含答案: 这是一份江苏省连云港市海州区新海实验中学2023-2024学年数学八年级第一学期期末调研试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,某小组名学生的中考体育分数如下等内容,欢迎下载使用。
2023年江苏省连云港市海州区新海实验中学中考数学三模试卷(含答案): 这是一份2023年江苏省连云港市海州区新海实验中学中考数学三模试卷(含答案),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。