山西省重点中学2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案
展开
这是一份山西省重点中学2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔,已知,则的度数是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.圆锥的底面半径是5cm,侧面展开图的圆心角是180°,圆锥的高是( )
A.5cmB.10cmC.6cmD.5cm
2.的值等于( )
A.B.C.D.
3.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是( )
A.掷一枚正六面体的骰子,出现1点的概率
B.抛一枚硬币,出现正面的概率
C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率
D.任意写一个整数,它能被2整除的概率
4.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是( )
A.≤b≤1B.≤b≤1C.≤b≤D.≤b≤1
5.在平面直角坐标系中,点(2,-1)关于原点对称的点的坐标为( )
A.B.C.D.
6.小明随机地在如图正方形及其内部区域投针,则针扎到阴影区域的概率是( )
A.B.C.D.
7.已知,则的度数是( )
A.30°B.45°C.60°D.90°
8.如图,在平面直角坐标系中,点的坐标为,那么的值是( )
A.B.C.D.
9.如图,函数的图象与轴的一个交点坐标为(3,0),则另一交点的横坐标为( )
A.﹣4B.﹣3C.﹣2D.﹣1
10.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,在△ABC中,AC=6,BC=10,,点D是AC边上的动点(不与点C重合),过点D作DE⊥BC,垂足为E,点F是BD的中点,连接EF,设CD=x,△DEF的面积为S,则S与x之间的函数关系式为_______________________.
12.如图,正方形的对角线上有一点,且,点在的延长线上,连接,过点作,交的延长 线于点,若,,则线段的长是________.
13.如果,那么______(用向量、表示向量).
14.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是_______________.
15.若=,则的值为________.
16.如图,CD是的直径,E为上一点,,A为DC延长线上一点,AE交于点B,且,则的度数为__________.
17.抛物线y=﹣(x+)2﹣3的顶点坐标是_____.
18.如果二次根式有意义,那么的取值范围是_________.
三、解答题(共66分)
19.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.
(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?
(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸袋(为正整数),则购买小红旗多少袋能恰好配套?请用含的代数式表示.
(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付元,求关于的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?
20.(6分)将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=OB=20cm,B′O′⊥OA,垂足为C.
(1)求点O′的高度O′C;(精确到0.1cm)
(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)
(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?
参考数据:(sin65°=0.906,cs65°=0.423,tan65°=2.1.ct65°=0.446)
21.(6分)如图,点C在⊙O上,联结CO并延长交弦AB于点D,,联结AC、OB,若CD=40,AC=20.
(1)求弦AB的长;
(2)求sin∠ABO的值.
22.(8分)抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上.
(1)求b、c的值;
(2)画出抛物线的简图并写出它与y轴的交点C的坐标;
(3)根据图象直接写出:点C关于直线x=2对称点D的坐标 ;若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为 (用含m、n的式子表示).
23.(8分)在平面直角坐标系中,点到直线的距离即为点到直线的垂线段的长.
(1)如图1,取点M(1,0),则点M到直线l:y=x﹣1的距离为多少?
(2)如图2,点P是反比例函数y=在第一象限上的一个点,过点P分别作PM⊥x轴,作PN⊥y轴,记P到直线MN的距离为d0,问是否存在点P,使d0=?若存在,求出点P的坐标,若不存在,请说明理由.
(3)如图3,若直线y=kx+m与抛物线y=x2﹣4x相交于x轴上方两点A、B(A在B的左边).且∠AOB=90°,求点P(2,0)到直线y=kx+m的距离最大时,直线y=kx+m的解析式.
24.(8分)某厂生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多1500元.
(1)求甲、乙商品的出厂单价分别是多少?
(2)某销售商计划购进甲商品200件,购进乙商品的数量是甲的4倍.恰逢该厂正在对甲商品进行降价促销活动,甲商品的出厂单价降低了,该销售商购进甲的数量比原计划增加了,乙的出厂单价没有改变,该销售商购进乙的数量比原计划少了.结果该销售商付出的总货款与原计划的总货款恰好相同,求的值.
25.(10分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染,每轮感染中平均一台电脑会感染多少台电脑?
26.(10分)阅读下面材料,完成(1)﹣(3)题
数学课上,老师出示了这样一道题:如图,四边形ABCD,AD∥BC,AB=AD,E为对角线AC上一点,∠BEC=∠BAD=2∠DEC,探究AB与BC的数量关系.
某学习小组的同学经过思考,交流了自己的想法:
小柏:“通过观察和度量,发现∠ACB=∠ABE”;
小源:“通过观察和度量,AE和BE存在一定的数量关系”;
小亮:“通过构造三角形全等,再经过进一步推理,就可以得到线段AB与BC的数量关系”.
……
老师:“保留原题条件,如图2, AC上存在点F,使DF=CF=AE,连接DF并延长交BC于点G,求的值”.
(1)求证:∠ACB=∠ABE;
(2)探究线段AB与BC的数量关系,并证明;
(3)若DF=CF=AE,求的值(用含k的代数式表示).
参考答案
一、选择题(每小题3分,共30分)
1、A
2、B
3、C
4、B
5、D
6、D
7、C
8、D
9、D
10、A
二、填空题(每小题3分,共24分)
11、
12、5
13、
14、a<2且a≠1.
15、
16、16°
17、(﹣,﹣3)
18、x≤1
三、解答题(共66分)
19、(1)每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)购买小红旗袋恰好配套;(3)需要购买国旗图案贴纸和小红旗各48,60袋,总费用元.
20、(1)8.5cm;(2)显示屏的顶部B′比原来升高了10.3cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转25度.
21、(1)40;(2)
22、(1)b=4,c=﹣4;(2)见解析,(0,﹣4);(3)(4,﹣4),(4﹣m,n)
23、(1);(2)点P(,2)或(2,);(3)y=﹣2x+1
24、(1)甲商品的出厂单价为900元/件,乙商品的出厂单价为600元/件;(2)的值为1.
25、每轮感染中平均一台电脑感染11台.
26、(1)见解析;(2)CB=2AB;(3)
相关试卷
这是一份山西省(大同)2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案,共6页。试卷主要包含了某地质学家预测,一元二次方程有实数解的条件,方程x2=x的解是,与y=2等内容,欢迎下载使用。
这是一份2023-2024学年山西省运城市运康中学数学九年级第一学期期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若式子有意义,则x的取值范围为,如图,点,在双曲线上,且,若,设,,,则、、的大小顺序为等内容,欢迎下载使用。
这是一份邢台市重点中学2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了如图,斜面AC的坡度,已知,则下列比例式成立的是等内容,欢迎下载使用。