山东省日照市莒县2023-2024学年九年级数学第一学期期末联考模拟试题含答案
展开这是一份山东省日照市莒县2023-2024学年九年级数学第一学期期末联考模拟试题含答案,共8页。试卷主要包含了已知函数y=ax2-2ax-1等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.已知⊙O的半径为4cm,点P在⊙O上,则OP的长为( )
A.2cmB.4cmC.6cmD.8cm
2.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:(单位:个)33,25,28,26,25,31,如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为( )
A.900个B.1080个C.1260个D.1800个
3.如图,已知矩形的面积是,它的对角线与双曲线图象交于点,且,则值是( )
A.B.C.D.
4.方差是刻画数据波动程度的量.对于一组数据,,,…,,可用如下算式计算方差:,其中“5”是这组数据的( )
A.最小值B.平均数C.中位数D.众数
5.将抛物线y=x2先向上平移1个单位,再向左平移2个单位,则新的函数解析式为( ).
A. B. C. D.
6.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数和的图象交于A、B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为( )
A.3B.4C.5D.10
7.已知函数y=ax2-2ax-1(a是常数且a≠0),下列结论正确的是( )
A.当a=1时,函数图像过点(-1,1)
B.当a= -2时,函数图像与x轴没有交点
C.当a,则当x1时,y随x的增大而减小
D.当a,则当x1时,y随x的增大而增大
8.在直角坐标系中,点关于坐标原点的对称点的坐标为( )
A.B. C.D.
9.如图是二次函数y=ax1+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b1>4ac;②1a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y1)为函数图象上的两点,则y1<y1.其中正确结论是( )
A.②④B.①③④C.①④D.②③
10.把函数y=﹣3x2的图象向右平移2个单位,所得到的新函数的表达式是( )
A.y=﹣3x2﹣2B.y=﹣3(x﹣2)2C.y=﹣3x2+2D.y=﹣3(x+2)2
二、填空题(每小题3分,共24分)
11.如图,四边形ABCD中,AB∥CD,∠C=90°,AB=1,CD=2,BC=3,点P为BC边上一动点,若AP⊥DP,则BP的长为_____.
12.已知,则___________.
13.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2__S乙2(填“>”、“=”、“<”)
14.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图(1)位置,第二次旋转至图(2)位置…,则正方形铁片连续旋转2018次后,点P的纵坐标为_________.
15.关于x的方程的两个根是﹣2和1,则nm的值为_____.
16.已知,则的值是_____.
17.如图,一张桌子上重叠摆放了若干枚一元硬币,从三个不同方向看它得到的平面图形如图所示,那么桌上共有_______枚硬币.
18.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是_____cm.
三、解答题(共66分)
19.(10分)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.
(3)若AD=3,AE=5,则菱形AECF的面积是多少?
20.(6分)如图,,是的两条弦,点分别在,上,且,是的中点.
求证:(1).
(2)过作于点.当,时,求的半径.
21.(6分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,且与反比例函数在第一象限的图象交于点,轴于点,.
(1)求点的坐标;
(2)动点在轴上,轴交反比例函数的图象于点.若,求点的坐标.
22.(8分)如图,在平面直角坐标系中,点为坐标原点,每个小方格的边长为个单位长度,在第二象限内有横、纵坐标均为整数的两点,点,点的横坐标为, 且.
在平面直角坐标系中标出点,写出点的坐标并连接;
画出关于点成中心对称的图形.
23.(8分)已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF相交于点G.
(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证:.
(2)如图②,若四边形ABCD是平行四边形,要使成立,完成下列探究过程:
要使,转化成,显然△DEA与△CFD不相似,考虑,需要△DEA∽△DFG,只需∠A=∠________;另一方面,只要,需要△CFD∽△CDG,只需∠CGD=∠________.由此探究出使成立时,∠B与∠EGC应该满足的关系是________.
(3)如图③,若AB=BC=6,AD=CD=8,∠BAD=90°,DE⊥CF,那么的值是多少?(直接写出结果)
24.(8分)如图,在中, , 在,上取一点,以为直径作,与相交于点,作线段的垂直平分线交于点,连接.
(1) 求证:是的切线;
(2)若,的半径为.求线段与线段的长.
25.(10分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1、2、3、4,这些卡片除数字外都相同,将卡片搅匀.
(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是 ;
(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于5的概率(请用画树状图或列表等方法求解).
26.(10分)阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为的形式:求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为二元一次方程组来解;求解一元二次方程,把它转化为两个一元一次方程来解:求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想一一转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程,可以通过因式分解把它转化为,解方程和,可得方程的解.利用上述材料给你的启示,解下列方程;
(1);
(2).
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、D
4、B
5、C
6、C
7、D
8、D
9、C
10、B
二、填空题(每小题3分,共24分)
11、1或2
12、
13、>
14、1
15、﹣1
16、
17、1
18、37.1
三、解答题(共66分)
19、(4)证明见解析;(4)证明见解析;(4)4
20、(1)见解析;(2)
21、(1);(2)或
22、(1)作图见解析;(2)作图见解析.
23、(1)证明见解析;(2)DGF,CDF,∠B+∠EGC=180°;(3).
24、(1)见解析;(2)
25、(1);(2)
26、(1);(2)x=1
相关试卷
这是一份2023-2024学年山东省莒县九上数学期末统考模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知点等内容,欢迎下载使用。
这是一份2023-2024学年山东省日照市五莲县数学九年级第一学期期末联考模拟试题含答案,共8页。试卷主要包含了下列运算正确的是,下列事件中,是必然事件的是等内容,欢迎下载使用。
这是一份山东省日照市莒县2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了的值等于,如图,AB是⊙O的弦等内容,欢迎下载使用。