山东省无棣县联考2023-2024学年九上数学期末经典模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图,在△ABC中,∠A=75°,AB=6,AC=8,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )
A.B.C.D.
2.如果,那么锐角A的度数是 ( )
A.60°B.45°C.30°D.20°
3.将抛物线y=x2﹣2向上平移1个单位后所得新抛物线的表达式为( )
A.y=﹣1B.y=﹣3C.y=﹣2D.y=﹣2
4.点P(-6,1)在双曲线上,则k的值为( )
A.-6B.6C.D.
5.如图,把一个直角三角板△ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合,连接CD,则∠BDC的度数为( )
A.15°B.20°C.25°D.30°
6.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
A.20B.24C.28D.30
7.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是( )
A.40°B.50°C.80°D.100°
8.sin60°的值是( )
A.B.C.D.
9.下列方程中,关于x的一元二次方程的是( )
A.x+=2B.ax2+bx+c=0
C.(x﹣2)(x﹣3)=0D.2x2+y=1
10.二次函数y=3(x-2)2-1的图像顶点坐标是( )
A.(-2,1)B.(-2,-1)C.(2,1)D.(2,-1)
二、填空题(每小题3分,共24分)
11.小慧准备给妈妈打个电话,但她只记得号码的前位,后三位由,,这三个数字组成,具体顺序忘记了,则她第一次试拨就拨通电话的概率是________.
12.若,,则______.
13.如图,是的直径,弦则阴影部分图形的面积为_________.
14.一件商品的标价为108元,经过两次降价后的销售价是72元,求平均每次降价的百分率.若设平均每次降价的百分率为x,则可列方程_________.
15.如图,已知中,点、、分别是边、、上的点,且,,且,若,那么__________
16.如图,在平面直角坐标系xOy中,点A在函数y=(x>0)的图象上,AC⊥x轴于点C,连接OA,则△OAC面积为_____.
17.如图,在四边形ABCD中,∠BAD=∠CDA=90°,AB=1,CD=2,过A,B,D三点的⊙O分别交BC,CD于点E,M,下列结论:
①DM=CM;②弧AB=弧EM;③⊙O的直径为2;④AE=AD.
其中正确的结论有______(填序号).
18.如图,菱形AD的边长为2,对角线AC、BD相交于点O,BD=2,分别以AB、BC为直径作半圆,则图中阴影部分的面积为__________.
三、解答题(共66分)
19.(10分)据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈西尺,人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”
大意如下:如图,今有山位于树的西面.山高为未知数,山与树相距里,树高丈尺,人站在离树里的处,观察到树梢恰好与山峰处在同一斜线上,人眼离地尺,问山AB的高约为多少丈?(丈尺,结果精确到个位)
20.(6分)从甲、乙两台包装机包装的质量为300g的袋装食品中各抽取10袋,测得其实际质量如下(单位:g)
甲:301,300,305,302,303,302,300,300,298,299
乙:305,302,300,300,300,300,298,299,301,305
(1)分别计算甲、乙这两个样本的平均数和方差;
(2)比较这两台包装机包装质量的稳定性.
21.(6分)某区为创建《国家义务教育优质均衡发展区》,自2016年以来加大了教育经费的投入,2016年该区投入教育经费9000万元,2018年投入教育经费12960万元,假设该区这两年投入教育经费的年平均增长率相同
(1)求这两年该区投入教育经费的年平均增长率
(2)若该区教育经费的投入还将保持相同的年平均增长率,请你预算2019年该区投入教育经费多少万元
22.(8分)如图,AB是⊙O的直径,AC是⊙O的弦,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E,连接BD.
(1)求证:DE是⊙O的切线;
(2)若BD=3,AD=4,则DE= .
23.(8分)图①,图②都是8×8的正方形网格,每个小正方形的顶点称为格点.线段OM,ON的端点均在格点上.在图①,图②给定的网格中以OM,ON为邻边各画一个四边形,使第四个顶点在格点上.要求:
(1)图①中所画的四边形是中心对称图形;
(2)图②中所画的四边形是轴对称图形;
(3)所画的两个四边形不全等.
24.(8分)如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:≈1.41,≈1.73,≈2.45)
25.(10分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.
(1)求证:AD是⊙O的切线.
(2)若BC=8,tanB=,求CD的长.
26.(10分)已知AD为⊙O的直径,BC为⊙O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC相交于点E.
(1)求证:△ABM∽△MCD;
(2)若AD=8,AB=5,求ME的长.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、A
4、A
5、A
6、D
7、A
8、C
9、C
10、D
二、填空题(每小题3分,共24分)
11、
12、28
13、
14、
15、
16、1
17、①②④
18、-
三、解答题(共66分)
19、由的高约为丈.
20、(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析
21、(1)20%;(2)15552万元
22、(1)见解析;(2)
23、(1)见解析;(2)见解析;(3)见解析
24、此时快艇与岛屿C的距离是20nmile.
25、(1)详见解析;(2)2
26、(1)证明见解析(2)4
山东省济宁微山县联考2023-2024学年九上数学期末联考模拟试题含答案: 这是一份山东省济宁微山县联考2023-2024学年九上数学期末联考模拟试题含答案,共7页。试卷主要包含了已知,则下列各式不成立的是等内容,欢迎下载使用。
山东省宁津县2023-2024学年九上数学期末经典模拟试题含答案: 这是一份山东省宁津县2023-2024学年九上数学期末经典模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年山东省滨州无棣县联考九年级数学第一学期期末经典模拟试题含答案: 这是一份2023-2024学年山东省滨州无棣县联考九年级数学第一学期期末经典模拟试题含答案,共7页。试卷主要包含了已知关于的方程个,下列图形中一定是相似形的是,下列说法正确的是等内容,欢迎下载使用。