山东省济宁市、曲阜市2023-2024学年数学九上期末联考试题含答案
展开
这是一份山东省济宁市、曲阜市2023-2024学年数学九上期末联考试题含答案,共7页。试卷主要包含了抛物线y=3等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:
则这四人中成绩发挥最稳定的是( )
A.甲B.乙C.丙D.丁
2.阅读理解:已知两点,则线段的中点的坐标公式为:,.如图,已知点为坐标原点,点,经过点,点为弦的中点.若点,则有满足等式:.设,则满足的等式是( )
A.B.
C.D.
3.如图,在△ABC中,DE//BC,,S梯形BCED=8,则S△ABC是( )
A.13B.12C.10D.9
4.已知二次函数y=-x2+2mx+2,当x-2C.m≥-2D.m≤-2
5.m是方程的一个根,且,则 的值为( )
A.B.1C.D.
6.抛物线y=3(x﹣2)2+5的顶点坐标是( )
A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)
7.如图,已知的内接正方形边长为2,则的半径是( )
A.1B.2C.D.
8.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是
A.相离B.相切C.相交D.无法判断
9.如图,直线与反比例函数的图象相交于、两点,过、两点分别作轴的垂线,垂足分别为点、,连接、,则四边形的面积为( )
A.4B.8C.12D.24
10.已知⊙O的半径为4,点P到圆心O的距离为4.5,则点P与⊙O的位置关系是( )
A.P在圆内B.P在圆上C.P在圆外D.无法确定
二、填空题(每小题3分,共24分)
11.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是 .
12.计算:______.
13.已知四个点的坐标分别为A(-4,2),B(-3,1),C(-1,1),D(-2,2),若抛物线y=ax2与四边形ABCD的边没有交点,则a的取值范围为____________.
14.小北同学掷两面质地均匀硬币,抛5次,4次正面朝上,则掷硬币出现正面概率为_____.
15.如图,在中,,,,则的长为________.
16.如图,在⊙O中,半径OC与弦AN垂直于点D,且AB=16,OC=10,则CD的长是_____.
17.庆“元旦”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,求这次有多少队参加比赛?若设这次有x队参加比赛,则根据题意可列方程为_____.
18.用一个圆心角90°,半径为8㎝的扇形纸围成一个圆锥,则该圆锥底面圆的半径为 .
三、解答题(共66分)
19.(10分)某商店将成本为每件60元的某商品标价100元出售.
(1)为了促销,该商品经过两次降低后每件售价为81元,若两次降价的百分率相同,求每次降价的百分率;
(2)经调查,该商品每降价2元,每月可多售出10件,若该商品按原标价出售,每月可销售100件,那么当销售价为多少元时,可以使该商品的月利润最大?最大的月利润是多少?
20.(6分)某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月进馆达到288人次,若进馆人次的月平均增长率相同.
(1)求进馆人次的月平均增长率;
(2)因条件限制,学校图书馆每月接纳能力不得超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接待第四个月的进馆人次,并说明理由.
21.(6分)如图,有三张不透明的卡片,除正面标记有不同数字外,其它均相同.将这三张卡片反面朝上洗匀后,从中随机抽取一张;放回洗匀后,再随机抽取一张.我们把第一次抽取的卡片上标记的数字记作,第二次抽取的卡片上标记的数字记作.
(1)写出为负数的概率;
(2)求使得一次函数的图象经过第二、三、四象限的概率.(用树状图或列表法求解)
22.(8分)已知,在平面直角坐标系中,二次函数的图象与轴交于点,与轴交于点,点的坐标为,点的坐标为.
(1)如图1,分别求的值;
(2)如图2,点为第一象限的抛物线上一点,连接并延长交抛物线于点,,求点的坐标;
(3)在(2)的条件下,点为第一象限的抛物线上一点,过点作轴于点,连接、,点为第二象限的抛物线上一点,且点与点关于抛物线的对称轴对称,连接,设,,点为线段上一点,点为第三象限的抛物线上一点,分别连接,满足,,过点作的平行线,交轴于点,求直线的解析式.
23.(8分)如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.
(1)求此抛物线的解析式和直线AB的解析式;
(2)如图①,动点E从O点出发,沿着OA方 向 以1个单位/秒的速度向终点A匀速运动,同时, 动点F从A点出发,沿着AB方向以个单位/ 秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?
(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.
24.(8分)取什么值时,关于的方程有两个相等的实数根?求出这时方程的根.
25.(10分)同圆的内接正三角形与外切正三角形的周长比是_____.
26.(10分)如图,是的直径,点在上,平分,是的切线,与相交于点,与相交于点,连接.
(1)求证:;
(2)若,,求的长.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、D
4、C
5、A
6、C
7、C
8、C
9、C
10、C
二、填空题(每小题3分,共24分)
11、y3>y1>y2.
12、
13、 或 或
14、
15、
16、4
17、=45
18、1.
三、解答题(共66分)
19、(1)10%;(2)当定价为90元时,w最大为4500元.
20、(1)进馆人次的月平均增长率为50%;(2)校图书馆能接纳第四个月的进馆人次.理由见解析.
21、(1);(2)
22、(1),;(2);(3).
23、(1)抛物线的解析式为y=﹣x2+2x+3,直线AB的解析式为y=﹣x+3;(2)t=或;(3)存在面积最大,最大值是,此时点P(,).
24、k=2或10时,当k=2时,x1=x2=,当k=10时,x1=x2=
25、1:1
26、(1)见解析;(2)
选 手
甲
乙
丙
丁
平均数(环)
9.2
9.2
9.2
9.2
方差(环2)
0.035
0.015
0.025
0.027
相关试卷
这是一份02,山东省济宁市曲阜市2023-2024学年九年级上学期期末数学试题,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年山东省济宁市曲阜市、鱼台县九年级(上)期末数学试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省曲阜市田家炳中学2023-2024学年九上数学期末联考模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,若3x=2y,使分式有意义的x的取值范是等内容,欢迎下载使用。