四川省乐山市第七中学2023-2024学年数学九上期末统考试题含答案
展开
这是一份四川省乐山市第七中学2023-2024学年数学九上期末统考试题含答案,共8页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.抛物线的图像与坐标轴的交点个数是( )
A.无交点B.1个C.2个D.3个
2.用公式法解一元二次方程时,化方程为一般式当中的依次为( )
A.B.C.D.
3.下列各坐标表示的点在反比例函数图象上的是( )
A.B.C.D.
4.如图,在平面直角坐标系内,正方形OABC的顶点A,B在第一象限内,且点A,B在反比例函数y=(k≠0)的图象上,点C在第四象限内.其中,点A的纵坐标为2,则k的值为( )
A.2﹣2B.2﹣2C.4﹣4D.4﹣4
5.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于( )
A.B.C.D.
6.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆( )
A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交
C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离
7.如图,⊙O的半径OA等于5,半径OC与弦AB垂直,垂足为D,若OD=3,则弦AB的长为( )
A.10B.8C.6D.4
8.已知二次函数(是实数),当自变量任取,时,分别与之对应的函数值,满足,则,应满足的关系式是( )
A.B.
C.D.
9.若关于x的一元二次方程kx2+2x+1=0有实数根,则k的取值范围是( )
A.k<1且k≠0B.k≤1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠0
10.下列说法正确的是( )
A.购买江苏省体育彩票有“中奖”与“不中奖”两种情况,所以中奖的概率是
B.国家级射击运动员射靶一次,正中靶心是必然事件
C.如果在若干次试验中一个事件发生的频率是,那么这个事件发生的概率一定也是
D.如果车间生产的零件不合格的概率为 ,那么平均每检查1000个零件会查到1个次品
二、填空题(每小题3分,共24分)
11.已知,且,则的值为__________.
12.如图所示的网格是正方形网格,线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,则α的值为_____.
13.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系:h=20t-5t2,当小球达到最高点时,小球的运动时间为第_________秒时.
14.如果,那么锐角_________°.
15.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).
16.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这个数据的平均数等于______.
17.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为____.
18.如图,在△ABC中,点D,E分别是AC,BC边上的中点,则△DEC的周长与△ABC的周长比等于_______.
三、解答题(共66分)
19.(10分)如图,在平面直角坐标系中,点B(12,10),过点B作x轴的垂线,垂足为A.作y轴的垂线,垂足为C.点D从O出发,沿y轴正方向以每秒1个单位长度运动;点E从O出发,沿x轴正方向以每秒3个单位长度运动;点F从B出发,沿BA方向以每秒2个单位长度运动.当点E运动到点A时,三点随之停止运动,运动过程中△ODE关于直线DE的对称图形是△O′DE,设运动时间为t.
(1)用含t的代数式分别表示点E和点F的坐标;
(2)若△ODE与以点A,E,F为顶点的三角形相似,求t的值;
(3)当t=2时,求O′点在坐标.
20.(6分)某食品厂生产一种半成品食材,成本为2元/千克,每天的产量P(百千克)与销售价格x(元/千克)满足函数关系式p=x+1.从市场反馈的信息发现,该食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:
已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克,
(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;
(2)当每天的产量小于或等于市场需求量时,这种食材能全部售出;当每天的产量大于市场需求量时,只能售出市场需求的量,而剩余的食材由于保质期短作废弃处理;
①当每天的食材能全部售出时,求x的取值范围;
②求厂家每天获得的利润y(百元)与销售价格x的函数关系式;
(3)在(2)的条件下,当x为多少时,y有最大值,并求出最大利润.
21.(6分)如图,已知直线交于,两点;是的直径,点为上一点,且平分,过作,垂足为.
(1)求证:为的切线;
(2)若,的直径为10,求的长.
22.(8分)如图1是实验室中的一种摆动装置,在地面上,支架是底边为的等腰直角三角形,摆动臂长可绕点旋转,摆动臂可绕点旋转,,.
(1)在旋转过程中:
①当三点在同一直线上时,求的长;
②当三点在同一直角三角形的顶点时,求的长.
(2)若摆动臂顺时针旋转,点的位置由外的点转到其内的点处,连结,如图2,此时,,求的长.
23.(8分)如图,四边形ABCD内接于⊙O,点E在CB的延长线上,BA平分∠EBD,AE=AB.
(1)求证:AC=AD.
(2)当,AD=6时,求CD的长.
24.(8分)如图,等边三角形ABC放置在平面直角坐标系中,已知A(0,0),B(4,0),反比例函数的图象经过点C.求点C的坐标及反比例函数的解析式.
25.(10分)问题呈现:
如图 1,在边长为 1 小的正方形网格中,连接格点 A、B 和 C、D,AB 和 CD 相交于点 P,求 tan ∠CPB 的值方法归纳:求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形,观察发现问题中∠ CPB不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 B、 E,可得 BE∥CD,则∠ABE=∠CPB,连接AE,那么∠CPB 就变换到 Rt△ABE 中.问题解决:
(1)直接写出图 1 中 tan CPB 的值为______;
(2)如图 2,在边长为 1 的正方形网格中,AB 与 CD 相交于点 P,求 cs CPB 的值.
26.(10分)如图,菱形ABCD中,∠B=60°,AB=3cm,过点A作∠EAF=60°,分别交DC,BC的延长线于点E,F,连接EF.
(1)如图1,当CE=CF时,判断△AEF的形状,并说明理由;
(2)若△AEF是直角三角形,求CE,CF的长度;
(3)当CE,CF的长度发生变化时,△CEF的面积是否会发生变化,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、B
4、B
5、A
6、C
7、B
8、D
9、B
10、C
二、填空题(每小题3分,共24分)
11、1
12、60°或120 °
13、1
14、30
15、1.2
16、.
17、1
18、1:1.
三、解答题(共66分)
19、(1)E(3t,0),F(12,10﹣2t);(2)t=;(3)O'(,)
20、(1)q=﹣x+14,其中2≤x≤10;(2)①2≤x≤4,②y=;(3)x=时取最大值,最大利润百元.
21、(1)连结OC,证明见详解,(2)AB=1.
22、(1)①,或;②或;(2).
23、(1)证明见解析;(2)CD=1.
24、点C坐标为(2,2),y=
25、(1)2;(2)
26、 (1) △AEF是等边三角形,证明见解析;(2) CF=,CE=6或CF=6,CE=;(3) △CEF的面积不发生变化,理由见解析.
种子粒数
100
400
800
1 000
2 000
5 000
发芽种子粒数
85
318
652
793
1 604
4 005
发芽频率
0.850
0.795
0.815
0.793
0.802
0.801
销售价格x(元/千克)
2
4
……
10
市场需求量q(百千克)
12
10
……
4
相关试卷
这是一份四川省乐山市夹江中学2023-2024学年数学九上期末调研试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,平移抛物线y=﹣等内容,欢迎下载使用。
这是一份四川省乐山市2023-2024学年九上数学期末统考模拟试题含答案,共8页。试卷主要包含了对于二次函数y=等内容,欢迎下载使用。
这是一份2023-2024学年四川省乐山市五中学九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,若不等式组无解,则的取值范围为等内容,欢迎下载使用。