2023-2024学年湖北省黄石市陶港中学九上数学期末统考试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,在正方形网格中,已知的三个顶点均在格点上,则的正切值为( )
A.B.C.D.
2.二次函数的图象如图所示,下列说法中错误的是( )
A.函数的对称轴是直线x=1
B.当x<2时,y随x的增大而减小
C.函数的开口方向向上
D.函数图象与y轴的交点坐标是(0,-3)
3.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则( )
A.DE=EBB.DE=EBC.DE=DOD.DE=OB
4.已知正多边形的边心距与边长的比为,则此正多边形为( )
A.正三角形B.正方形C.正六边形D.正十二边形
5.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是( )
A.74B.44C.42D.40
6.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径,AC=2,则csB的值是( )
A.
B.
C.
D.
7.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )
A.B.C.D.
8.已知圆心O到直线l的距离为d,⊙O的半径r=6,若d是方程x2–x–6=0的一个根,则直线l与圆O的位置关系为( )
A.相切B.相交
C.相离D.不能确定
9.一组数据-3,2,2,0,2,1的众数是( )
A.-3B.2C.0D.1
10.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=3,则AE的长为( )
A.B.5C.8D.4
二、填空题(每小题3分,共24分)
11.已知中,,交于,且,,,,则的长度为________.
12.如图,某试验小组要在长50米,宽39米的矩形试验田中间开辟一横一纵两条等宽的小道,使剩余的面积是1800平方米,求小道的宽.若设小道的宽为米,则所列出的方程是_______(只列方程,不求解)
13.把一袋黑豆中放入红豆100粒,搅匀后取出100粒豆子,其中红豆5粒,则该袋中约有黑豆_______粒.
14.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是______.
15.在实数范围内定义一种运算“※”,其规则为a※b=a2﹣b,根据这个规则,方程(x+2)※9=0的解为_____.
16.如图,Rt△ABC中,∠C=90°,且AC=1,BC=2,则sin∠A=_____.
17.反比例函数y=的图象位于第二、四象限,则k的取值范围是_______.
18.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)的图象与AB相交于点D.与BC相交于点E,且BD=3,AD=6,△ODE的面积为15,若动点P在x轴上,则PD+PE的最小值是_____.
三、解答题(共66分)
19.(10分)我区某校组织了一次“诗词大会”,张老师为了选拔本班学生参加,对本班全体学生诗词的掌握情况进行了调查,并将调查结果分为了三类:A:好,B:中,C:差.请根据图中信息,解答下列问题:
(1)全班学生共有 人;
(2)扇形统计图中,B类占的百分比为 %,C类占的百分比为 %;
(3)将上面的条形统计图补充完整;
(4)小明被选中参加了比赛.比赛中有一道必答题是:从下表所示的九宫格中选取七个字组成一句诗,其答案为“便引诗情到碧霄”.小明回答该问题时,对第四个字是选“情”还是选“青”,第七个字是选“霄”还是选“宵”,都难以抉择,若分别随机选择,请用列表或画树状图的方法求小明回答正确的概率.
20.(6分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1.
(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);
(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?
21.(6分)如图,在平面直角坐标系中,⊙O的半径为1,点A在x轴的正半轴上,B为⊙O上一点,过点A、B的直线与y轴交于点C,且OA2=AB•AC.
(1)求证:直线AB是⊙O的切线;
(2)若AB=,求直线AB对应的函数表达式.
22.(8分)已知△ABC内接于⊙O,过点A作直线EF.
(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种): 或者 .
(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.
23.(8分)如图①,是一张直角三角形纸片,∠B=90°,AB=12,BC=8,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大.
(1)请通过计算说明小明的猜想是否正确;
(2)如图②,在△ABC中,BC=10,BC边上的高AD=10,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,求矩形PQMN面积的最大值;
(3)如图③,在五边形ABCDE中,AB=16,BC=20,AE=10,CD=8,∠A=∠B=∠C=90°.小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.
24.(8分)某软件开发公司开发了A、B两种软件,每种软件成本均为1400元,售价分别为2000元、1800元,这两种软件每天的销售额共为112000元,总利润为28000元.
(1)该店每天销售这两种软件共多少个?
(2)根据市场行情,公司拟对A种软件降价销售,同时提高B种软件价格.此时发现,A种软件每降50元可多卖1件,B种软件每提高50元就少卖1件.如果这两种软件每天销售总件数不变,那么这两种软件一天的总利润最多是多少?
25.(10分)如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.
(1)求抛物线的解析式;
(2)当点E(x,y)运动时,试求三角形OEB的面积S与x之间的函数关系式,并求出面积S的最大值?
(3)在y轴上确定一点M,使点M到D、B两点距离之和d=MD+MB最小,求点M的坐标.
26.(10分)如图,一位同学想利用树影测量树高,他在某一时刻测得高为的竹竿影长为,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影高,又测得地面部分的影长,则他测得的树高应为多少米?
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、D
4、B
5、C
6、B
7、C
8、B
9、B
10、A
二、填空题(每小题3分,共24分)
11、
12、(答案不唯一)
13、1
14、
15、x1=1,x2=﹣1.
16、
17、
18、.
三、解答题(共66分)
19、(1)40;(2)60,15;(3)补全条形统计图见解析;(4)小明回答正确的概率是.
20、y=﹣10x2+1600x﹣48000;80元时,最大利润为16000元.
21、(1)见解析;(2)
22、(1)①∠BAE=90°,②∠EAC=∠ABC;(2)EF是⊙O的切线
23、(1)正确,理由见解析;(2)当a=5时,S矩形MNPQ最大为25;(3)矩形的最大面积为1.
24、(1)60;(2)1
25、(1)y=x2﹣4x+;(2)S=﹣(x﹣3)2+(1<x<1),当x=3时,S有最大值;(3)(0,﹣)
26、树高为米.
情
到
碧
霄
诗
青
引
宵
便
2023-2024学年湖北省黄石市阳新县九上数学期末统考模拟试题含答案: 这是一份2023-2024学年湖北省黄石市阳新县九上数学期末统考模拟试题含答案,共8页。试卷主要包含了一元二次方程的根的情况是,将二次函数化为的形式,结果为等内容,欢迎下载使用。
2023-2024学年湖北省黄石市陶港中学数学八年级第一学期期末达标检测模拟试题含答案: 这是一份2023-2024学年湖北省黄石市陶港中学数学八年级第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了下列各式中计算结果为的是,下列四种说法,若关于的分式方程无解,则的值是等内容,欢迎下载使用。
湖北省黄石市阳新县陶港中学2023—2024学年 上学期期末摸底检测九年级数学试题卷: 这是一份湖北省黄石市阳新县陶港中学2023—2024学年 上学期期末摸底检测九年级数学试题卷,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。