2023-2024学年湖北省武汉市东湖高新区九上数学期末监测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,反比例函数y=的图象与一次函数y=kx+b的图象相交于点A,B,已知点A的坐标为(-2,1),点B的纵坐标为-2,根据图象信息可得关于x的方程=kx+b的解为( )
A.-2,1B.1,1C.-2,-2D.无法确定
2.抛物线的顶点坐标是( )
A.(2, 0)B.(-2, 0)C.(0, 2)D.(0, -2)
3.已知反比例函数y=的图象经过点P(﹣2,3),则下列各点也在这个函数图象的是( )
A.(﹣1,﹣6)B.(1,6)C.(3,﹣2)D.(3,2)
4.如图,在平面直角坐标系中,梯形OACB的顶点O是坐标原点,OA边在y轴正半轴上,OB边在x轴正半轴上,且OA∥BC,双曲线y=(x>0)经过AC边的中点,若S梯形OACB=4,则双曲线y=的k值为( )
A.5B.4C.3D.2
5.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为( )
A.cmB.cmC.3cmD.cm
6.如图,线段 OA=2,且OA与x轴的夹角为45°,将点 A 绕坐标原点 O 逆时针旋转105°后得到点,则的坐标为( )
A.B.C.D.
7.已知△ABC,以AB为直径作⊙O,∠C=88°,则点C在( )
A.⊙O上B.⊙O外C.⊙O 内
8.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为( )
A.1B.2
C.3D.4
9.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( )
A.12πB.24πC.36πD.48π
10.通过对《一元二次方程》全章的学习,同学们掌握了一元二次方程的三种解法:配方法、公式法、因式分解法,其实,每种解法都是把一个一元二次方程转化为两个一元一次方程来解,体现的基本思想是( )
A.转化B.整体思想C.降次D.消元
二、填空题(每小题3分,共24分)
11.若方程的解为,则的值为_____________.
12.若,则的值为__________.
13.如图,正六边形ABCDEF内接于O,点M是边CD的中点,连结AM,若圆O的半径为2,则AM=____________.
14.现有5张正面分别标有数字0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使得关于的一元二次方程有实数根,且关于的分式方程有整数解的概率为 .
15.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱高为.已知,冬至时北京的正午日光入射角约为,则立柱根部与圭表的冬至线的距离(即的长)为______.
16.一元二次方程有一个根为,二次项系数为1,且一次项系数和常数项都是非0的有理数,这个方程可以是_________.
17.已知等腰三角形的两边长是方程x2﹣9x+18=0的两个根,则该等腰三角形的周长为_____.
18.已知中,,交于,且,,,,则的长度为________.
三、解答题(共66分)
19.(10分)已知,二次三项式﹣x2+2x+1.
(1)关于x的一元二次方程﹣x2+2x+1=﹣mx2+mx+2(m为整数)的根为有理数,求m的值;
(2)在平面直角坐标系中,直线y=﹣2x+n分别交x,y轴于点A,B,若函数y=﹣x2+2|x|+1的图象与线段AB只有一个交点,求n的取值范围.
20.(6分)一个不透明袋子中有个红球,个绿球和个白球,这些球除颜色外无其他差别,
当时,从袋中随机摸出个球,摸到红球和摸到白球的可能性 (填“相同”或“不相同”);
从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于,则的值是 ;
在的情况下,如果一次摸出两个球,请用树状图或列表法求摸出的两个球颜色不同的概率.
21.(6分)如图所示的直面直角坐标系中,的三个顶点坐标分别为,,.
(1)将绕原点逆时针旋转画出旋转后的;
(2)求出点到点所走过的路径的长.
22.(8分)如图,己知是的直径,切于点,过点作于点,交于点,连接、.
(1)求证:是的切线:
(2)若,,求阴影部分面积.
23.(8分)阅读下面内容,并按要求解决问题: 问题:“在平面内,已知分别有个点,个点,个点,5 个点,…,n 个点,其中任意三 个点都不在同一条直线上.经过每两点画一条直线,它们可以分别画多少条直线? ” 探究:为了解决这个问题,希望小组的同学们设计了如下表格进行探究:(为了方便研 究问题,图中每条线段表示过线段两端点的一条直线)
请解答下列问题:
(1)请帮助希望小组归纳,并直接写出结论:当平面内有个点时,直线条数为 ;
(2)若某同学按照本题中的方法,共画了条直线,求该平面内有多少个已知点.
24.(8分)已知:如图,在半圆中,直径的长为6,点是半圆上一点,过圆心作的垂线交线段的延长线于点,交弦于点.
(1)求证:;
(2)记,,求关于的函数表达式;
(3)若,求图中阴影部分的面积.
25.(10分)李师傅驾驶出租车匀速地从西安市送客到咸阳国际机场,全程约,设小汽车的行驶时间为 (单位:),行驶速度为(单位:),且全程速度限定为不超过.
(1)求关于的函数表达式;
(2)李师傅上午点驾驶小汽车从西安市出发.需在分钟后将乘客送达咸阳国际机场,求小汽车行驶速度.
26.(10分)如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线
(1)求抛物线的解析式;
(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、A
3、C
4、D
5、A
6、C
7、B
8、B
9、B
10、C
二、填空题(每小题3分,共24分)
11、
12、
13、
14、
15、
16、
17、1.
18、
三、解答题(共66分)
19、(1)m=7;(2)n≤﹣2或1≤n<2.
20、(1)相同;(2)2;(3).
21、(1)见解析;(2)
22、(1)证明见解析;(2)
23、(1);(2)8.
24、(1)见解析;(2);(3)
25、(1);(2)
26、(1)
(2)M点坐标为(0,0)或
湖北省武汉东湖高新区2023-2024学年九上数学期末复习检测试题含答案: 这是一份湖北省武汉东湖高新区2023-2024学年九上数学期末复习检测试题含答案,共8页。试卷主要包含了如图,正方形的边长为,点在边上等内容,欢迎下载使用。
2023-2024学年湖北省武汉市东湖高新区八年级(上)学期期末数学试题(含解析): 这是一份2023-2024学年湖北省武汉市东湖高新区八年级(上)学期期末数学试题(含解析),共21页。试卷主要包含了填空题.,解答题.等内容,欢迎下载使用。
2023-2024学年湖北省武汉市东湖高新区九上数学期末经典试题含答案: 这是一份2023-2024学年湖北省武汉市东湖高新区九上数学期末经典试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列方程中是一元二次方程的是,下列命题是真命题的个数是等内容,欢迎下载使用。