2023-2024学年江苏省苏州市常熟市数学九上期末统考模拟试题含答案
展开
这是一份2023-2024学年江苏省苏州市常熟市数学九上期末统考模拟试题含答案,共7页。试卷主要包含了若点A等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,△ABC的三边的中线AD,BE,CF的公共点为G,且AG:GD=2:1,若S△ABC=12,则图中阴影部分的面积是( )
A.3B.4C.5D.6
2.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE的大小是( )
A.115°B.105°C.100°D.95°
3.等于( )
A.B.2C.3D.
4.如图,将绕点,按逆时针方向旋转120°,得到(点的对应点是点,点的对应点是点),连接.若,则的度数为( )
A.15°B.20 °C.30°D.45°
5.如图,四边形 ABCD 是⊙O的内接四边形,若∠BOD=88°,则∠BCD 的度数是
A.88°B.92°C.106°D.136°
6.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )
A.频率就是概率
B.频率与试验次数无关
C.概率是随机的,与频率无关
D.随着试验次数的增加,频率一般会越来越接近概率
7.若点A(2,y1),B(﹣3,y2),C(﹣1,y3)三点在抛物线y=x2﹣4x﹣m的图象上,则y1、y2、y3的大小关系是( )
A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2
8.在正方形网格中,△ABC的位置如图所示,则cs∠B的值为( )
A.B.C.D.1
9.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是( )
A.15πB.20πC.24πD.30π
10.下面四组线段中不能成比例线段的是( )
A.、、、B.、、、C.、、、D.、、、
二、填空题(每小题3分,共24分)
11.已知△ABC ∽△DEF,其中顶点A、B、C分别对应顶点D、E、F,如果∠A=40°,∠E=60°,那么∠C=_______度.
12.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=2,则BC的长为______.
13.某学习小组做摸球实验,在一个不透明的口袋里装有颜色不同的黄、白两种颜色的乒乓球若干只,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据
现从这个口袋中摸出一球,恰好是黄球的概率为_____.
14.如图,AC是⊙O的直径,∠ACB=60°,连接AB,过A、B两点分别作⊙O的切线,两切线交于点P.若已知⊙O的半径为1,则△PAB的周长为_____.
15.已知x-2y=3,试求9-4x+8y=_______
16.如图,Rt△ABC中,∠A=90°,∠B=30°,AC=6,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分面积为__________.(结果保留π)
17.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式是______.
18.计算:__________.
三、解答题(共66分)
19.(10分)有4张看上去无差别的卡片,上面分别写着1,2,3,4.
(1)一次性随机抽取2张卡片,求这两张卡片上的数字之和为奇数的概率;
(2)随机摸取1张后,放回并混在一起,再随机抽取1张,求两次取出的卡片上的数字之和等于4的概率.
20.(6分)如图1,若二次函数的图像与轴交于点(-1,0)、,与轴交于点(0,4),连接、,且抛物线的对称轴为直线.
(1)求二次函数的解析式;
(2)若点是抛物线在一象限内上方一动点,且点在对称轴的右侧,连接、,是否存在点,使?若存在,求出点的坐标;若不存在,说明理由;
(3)如图2,若点是抛物线上一动点,且满足,请直接写出点坐标.
21.(6分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.
(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=1.求DE的长.
22.(8分)有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?
23.(8分)垃圾分类是必须要落实的国家政策,环卫部门要求垃圾要按可回收物,有害垃圾,餐厨垃圾,其它垃圾四类分别装袋,投放.甲投放了一袋垃圾,乙投放了两袋垃圾(两袋垃圾不同类).
(1)直接写出甲投放的垃圾恰好是类垃圾的概率;
(2)用树状图求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
24.(8分)姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒.
(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.
(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案.
25.(10分)(1)解方程:;
(2)求二次函数的图象与坐标轴的交点坐标.
26.(10分)如图,直线y=﹣x+m与抛物线y=ax2+bx都经过点A(6,0),点B,过B作BH垂直x轴于H,OA=3OH.直线OC与抛物线AB段交于点C.
(1)求抛物线的解析式;
(2)当点C的纵坐标是时,求直线OC与直线AB的交点D的坐标;
(3)在(2)的条件下将△OBH沿BA方向平移到△MPN,顶点P始终在线段AB上,求△MPN与△OAC公共部分面积的最大值.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、A
4、C
5、D
6、D
7、C
8、A
9、A
10、B
二、填空题(每小题3分,共24分)
11、80
12、2
13、0.1
14、
15、-3
16、9﹣3π
17、
18、
三、解答题(共66分)
19、 (1);(2).
20、(1) (2)存在, (3)Q点的坐标为或
21、(1)、证明过程见解析;(2)、
22、选择A转盘.理由见解析
23、 (1) ; (2)乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.
24、(1)姐姐用时秒,妹妹用时秒,所以不能同时到,姐姐先到;(2)姐姐后退米或妹妹前进3米
25、(1)x1=1+,x2=1﹣;(2)(5,0),(-3,0),(0,-15)
26、(1)y=-x2+3x;(2)(4,2);(3)
摸球的次数n
100
150
200
500
800
1000
摸到白球的次数m
58
96
116
295
484
601
摸到白球的频率
0.58
0.64
0.58
0.59
0.605
0.601
相关试卷
这是一份江苏省苏州市新区一中学2023-2024学年九上数学期末统考模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份2023-2024学年江苏省苏州市昆山市九上数学期末联考模拟试题含答案,共7页。试卷主要包含了如图,,相交于点,,已点A等内容,欢迎下载使用。
这是一份2023-2024学年江苏省苏州市吴中学、吴江、相城区九上数学期末统考试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列命题是真命题的是,函数y=mx2+等内容,欢迎下载使用。