2023-2024学年广东省深圳市宝安区数学九年级第一学期期末经典模拟试题含答案
展开
这是一份2023-2024学年广东省深圳市宝安区数学九年级第一学期期末经典模拟试题含答案,共8页。试卷主要包含了按下面的程序计算等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.抛物线与y轴的交点坐标是( )
A.(4,0)B.(-4,0)C.(0,-4)D.(0,4)
2.质检部门对某酒店的餐纸进行调查,随机调查5包(每包5片),5包中合格餐纸(单位:片)分别为4,5,4,5,5,则估计该酒店的餐纸的合格率为 ( )
A.95%B.97%C.92%D.98%
3.如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是( )
A.B.C.D.2
4.如图,在同一平面直角坐标系中,反比例函数与一次函数y=kx−1(k为常数,且k≠0)的图象可能是( )
A.B.C.D.
5.下列四个图案中,不是轴对称图案的是( )
A.B.
C.D.
6.如图,△ABC内接于圆O,∠A=50°,∠ABC=60°,BD是圆O的直径,BD交AC于点E,连结DC,则∠AEB等于( )
A.70°B.110°C.90°D.120°
7.己知是一元二次方程的一个根,则的值为( )
A.1B.-1或2C.-1D.0
8.已知抛物线y=x2-8x+c的顶点在x轴上,则c的值是( )
A.16B.-4C.4D.8
9.按下面的程序计算:
若开始输入的值为正整数,最后输出的结果为,则开始输入的值可以为( )
A.B.C.D.
10.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为( )
A.5%B.20%C.15%D.10%
二、填空题(每小题3分,共24分)
11.若点A(1,y1)和点B(2,y2)在反比例函数y=﹣的图象上,则y1与y2的大小关系是_____.
12.已知二次函数的图象如图所示,并且关于的一元二次方:有两个不相等的实数根,下列结论:①;②;③;④,其中正确的有__________.
13.对于实数a和b,定义一种新的运算“*”,,计算=______________________.若恰有三个不相等的实数根,记,则k的取值范围是 _______________________.
14.如图,在△ABC中,BC=12,BC上的高AH=8,矩形DEFG的边EF在边BC上,顶点D、G分别在边AB、AC上.设DE,矩形DEFG的面积为,那么关于的函数关系式是______. (不需写出x的取值范围).
15.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=﹣x2+x+,则该运动员此次掷铅球的成绩是_____ m.
16.如图,AC为圆O的弦,点B在弧AC上,若∠CBO=58°,∠CAO=20°,则∠AOB的度数为___________
17.若x1,x2是一元二次方程2x2+x-3=0的两个实数根,则x1+x2=____.
18.如果两个相似三角形的对应角平分线之比为2:5,较小三角形面积为8平方米,那么较大三角形的面积为_____________平方米.
三、解答题(共66分)
19.(10分)为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元.
(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;
(2)若学校购买乒乓球拍和羽毛球拍共30幅,且支出不超过1480元,则最多能够购买多少副羽毛球拍?
20.(6分)如图,在直角三角形△ABC中,∠BAC=90°,点E是斜边BC的中点,圆O经过A、C、E三点,F是弧EC上的一个点,且∠AFC=36°,则∠B=______.
21.(6分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.
22.(8分)(1)计算:.
(2)用适当方法解方程:
(3)用配方法解方程:
23.(8分)如图,已知二次函数的图象与轴交于点、,与轴交于点,直线交二次函数图象的对称轴于点,若点C为的中点.
(1)求的值;
(2)若二次函数图象上有一点,使得,求点的坐标;
(3)对于(2)中的点,在二次函数图象上是否存在点,使得∽?若存在,求出点的坐标;若不存在,请说明理由.
24.(8分)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为450 ,然后他沿着正对树PQ的方向前进10m到达B点处,此时测得树顶P和树底Q的仰角分别是600和300,设PQ垂直于AB,且垂足为C.
(1)求∠BPQ的度数;
(2)求树PQ的高度(结果精确到0.1m, )
25.(10分)如图,抛物线与直线相交于,两点,且抛物线经过点
(1)求抛物线的解析式.
(2)点是抛物线上的一个动点(不与点点重合),过点作直线轴于点,交直线于点.当时,求点坐标;
(3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.
26.(10分)△ABC在平面直角坐标系中如图:
(1)画出将△ABC绕点O逆时针旋转90°所得到的,并写出点的坐标.
(2)画出将△ABC关于x轴对称的,并写出点的坐标.
(3)求在旋转过程中线段OA扫过的图形的面积.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、B
4、B
5、B
6、B
7、C
8、A
9、B
10、D
二、填空题(每小题3分,共24分)
11、y1<y1
12、③
13、
14、;
15、1
16、76°
17、
18、1
三、解答题(共66分)
19、(1)购买一副乒乓球拍28元,一副羽毛球拍60元;(2)这所中学最多可购买20副羽毛球拍.
20、18°
21、树高为6.5米.
22、(1)3;(2) x1=,x2=;(3) x1=1+,x2=1−.
23、(1);(2)或;(3)不存在,理由见解析.
24、(1)∠BPQ=30°;(2)树PQ的高度约为15.8m.
25、(1);(2)点坐标为(2,9)或(6,-7);(3)存在点Q()使得四边形OFQC的面积最大,见解析.
26、 (1)(-3,2);(2)(2,-3);(3)S=
相关试卷
这是一份广东省深圳市宝安区宝安中学2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了已知a、b、c、d是比例线段等内容,欢迎下载使用。
这是一份2023-2024学年广东省深圳市平冈中学数学九年级第一学期期末经典试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份广东省深圳市助力教育2023-2024学年数学九年级第一学期期末经典模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,抛物线的顶点坐标是,如图,在中,,,,,则的长为等内容,欢迎下载使用。