2023-2024学年山东省青岛市胶州实验九上数学期末监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.下列事件属于随机事件的是( )
A.抛出的篮球会下落
B.两枚骰子向上一面的点数之和大于1
C.买彩票中奖
D.口袋中只装有10个白球,从中摸出一个黑球
2.如图,已知正方形ABCD,将对角线BD绕着点B逆时针旋转,使点D落在CB的延长线上的D′点处,那么sin∠AD′B的值是( )
A.B.C.D.
3.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大:④若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2;⑤<0,其中正确的结论有( )
A.2个B.3个C.4个D.5个
4.如图,平行四边形的四个顶点分别在正方形的四条边上.,分别交,,于点,,,且.要求得平行四边形的面积,只需知道一条线段的长度.这条线段可以是( )
A.B.C.D.
5.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是( )。
A.πr2B.πr2C.πr2D.πr2
6.下列四张扑克牌图案,属于中心对称图形的是( )
A.B.C.D.
7.如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是( )
A.B.C.D.
8.如图,P(x,y)是反比例函数的图象在第一象限分支上的一个动点,PA⊥x轴于点A,PB⊥y轴于点B,随着自变量x的逐渐增大,矩形OAPB的面积( )
A.保持不变B.逐渐增大C.逐渐减小D.无法确定
9.若一元二次方程x2+2x+a=0有实数解,则a的取值范围是( )
A.a<1B.a≤4C.a≤1D.a≥1
10.用配方法解方程x2+4x+1=0时,原方程应变形为( )
A.(x+2)2=3B.(x﹣2)2=3C.(x+2)2=5D.(x﹣2)2=5
二、填空题(每小题3分,共24分)
11.已知一次函数与反比例函数的图象交于点,则________.
12.如图,一款落地灯的灯柱AB垂直于水平地面MN,高度为1.6米,支架部分的形为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8米,距地面的高度为2.4 米,灯罩顶端D距灯柱AB的水平距离为1.4米,则灯罩顶端D距地面的高度为______米.
13.如图,∠AOB=90°,且OA、OB分别与反比例函数、的图象交于A、B两点,则tan∠OAB的值是______.
14.一张矩形的纸片ABCD中,AB=10,AD=8.按如图方式折,使A点刚好落在CD上。则折痕(阴影部分)面积为_________________.
15.若是关于的一元二次方程,则__________.
16.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是______m.
17.如图,在△ABC中,AB=AC,∠A=120°,BC=4,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是_____(保留π).
18.如果a,b,c,d是成比例线段,其中a=2cm,b=6cm,c=5cm,则线段d=_______cm.
三、解答题(共66分)
19.(10分)综合与探究:三角形旋转中的数学问题.
实验与操作: Rt△ABC中,∠ABC=90°,∠ACB=30°. 将Rt△ABC绕点A按顺时针方向旋转得到Rt△AB′C′(点B′,C′分别是点B,C的对应点). 设旋转角为α(0°<α<180°),旋转过程中直线B′B和线段CC′相交于点D.
猜想与证明:
(1)如图1,当AC′经过点B时,探究下列问题:
①此时,旋转角α的度数为 °;
②判断此时四边形AB′DC的形状,并证明你的猜想;
(2)如图2,当旋转角α=90°时,求证:CD=C′D;
(3)如图3,当旋转角α在0°<α<180°范围内时,连接AD,直接写出线段AD与C之间的位置关系(不必证明).
20.(6分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.
(1)如图①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“匀称三角形”.
①请判断“匀称中线”是哪条边上的中线,
②求BC:AC:AB的值.
(2)如图②,△ABC是⊙O的内接三角形,AB>AC,∠BAC=45°,S△ABC=2,将△ABC绕点A逆时针旋转45°得到△ADE,点B的对应点为D,AD与⊙O交于点M,若△ACD是“匀称三角形”,求CD的长,并判断CM是否为△ACD的“匀称中线”.
21.(6分)图1和图2中的正方形ABCD和四边形AEFG都是正方形.
(1)如图1,连接DE,BG,M为线段BG的中点,连接AM,探究AM与DE的数量关系和位置关系,并证明你的结论;
(2)在图1的基础上,将正方形AEFG绕点A逆时针方向旋转到图2的位置,连结DE、BG,M为线段BG的中点,连结AM,探究AM与DE的数量关系和位置关系,并证明你的结论.
22.(8分)在平面直角坐标系xOy中,抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,交y轴于点C.
(1)如图1,求抛物线的解析式;
(2)如图2,点P是第一象限抛物线上的一个动点,连接CP交x轴于点E,过点P作PK∥x轴交抛物线于点K,交y轴于点N,连接AN、EN、AC,设点P的横坐标为t,四边形ACEN的面积为S,求S与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)如图3,在(2)的条件下,点F是PC中点,过点K作PC的垂线与过点F平行于x轴的直线交于点H,KH=CP,点Q为第一象限内直线KP下方抛物线上一点,连接KQ交y轴于点G,点M是KP上一点,连接MF、KF,若∠MFK=∠PKQ,MP=AE+GN,求点Q坐标.
23.(8分)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.
24.(8分)如图1,内接于,AD是直径,的平分线交BD于H,交于点C,连接DC并延长,交AB的延长线于点E.
(1)求证:;
(2)若,求的值
(3)如图2,连接CB并延长,交DA的延长线于点F,若,求的面积.
25.(10分)如图,△ABC中,DE∥BC,EF∥AB.
(1)求证:△ADE∽△EFC;
(2)若AD=4,DE=6,=2,求EF和FC的值.
26.(10分)问题背景:如图1设P是等边△ABC内一点,PA=6,PB=8,PC=10,求∠APB的度数.小君研究这个问题的思路是:将△ACP绕点A逆时针旋转60°得到△ABP',易证:△APP'是等边三角形,△PBP'是直角三角形,所以∠APB=∠APP'+∠BPP'=150°.
简单应用:(1)如图2,在等腰直角△ABC中,∠ACB=90°.P为△ABC内一点,且PA=5,PB=3,PC=2,则∠BPC= °.
(2)如图3,在等边△ABC中,P为△ABC内一点,且PA=5,PB=12,∠APB=150°,则PC= .
拓展廷伸:(3)如图4,∠ABC=∠ADC=90°,AB=BC.求证:BD=AD+DC.
(4)若图4中的等腰直角△ABC与Rt△ADC在同侧如图5,若AD=2,DC=4,请直接写出BD的长.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、A
3、C
4、C
5、D
6、B
7、C
8、A
9、C
10、A
二、填空题(每小题3分,共24分)
11、1
12、1.95
13、
14、25
15、1
16、10
17、4.
18、15
三、解答题(共66分)
19、(1)①60;②四边形AB′DC是平行四边形,证明见解析.(2)证明见解析;(3)
20、(1)① “匀称中线”是BE,它是AC边上的中线,②BC:AC:AB=;(2)CD=a,CM不是△ACD的“匀称中线”.理由见解析.
21、(1)AM=DE,AM⊥DE,理由详见解析;(2)AM=DE,AM⊥DE,理由详见解析.
22、(1)y=x2﹣2x﹣3;(2)S=t2+t;(3)Q(,).
23、王老师购买该奖品的件数为40件.
24、(1)见解析;(2) ;(3)
25、(1)证明见解析;(2)EF=2,FC=1.
26、(1)135;(2)13;(3)见解析;(4)
购买件数
销售价格
不超过30件
单价40元
超过30件
每多买1件,购买的所有物品单价将降低0.5元,但单价不得低于30元
山东省青岛市平度实验2023-2024学年九上数学期末考试模拟试题含答案: 这是一份山东省青岛市平度实验2023-2024学年九上数学期末考试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年山东省青岛市胶州市九上数学期末质量检测模拟试题含答案: 这是一份2023-2024学年山东省青岛市胶州市九上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,解方程,选择最适当的方法是,一元二次方程有实数解的条件等内容,欢迎下载使用。
2023-2024学年山东省青岛市黄岛十中学九上数学期末监测模拟试题含答案: 这是一份2023-2024学年山东省青岛市黄岛十中学九上数学期末监测模拟试题含答案,共9页。试卷主要包含了下列说法中错误的是等内容,欢迎下载使用。