2023-2024学年安顺市重点中学九上数学期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.下列函数中,图象不经过点(2,1)的是( )
A.y=﹣x2+5B.y=C.y=xD.y=﹣2x+3
2.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 ( )
A.B.C.D.
3.一个长方形的面积为,且一边长为,则另一边的长为( )
A.B.C.D.
4.如图,在菱形中,已知,,以为直径的与菱形相交,则图中阴影部分的面积为( )
A.B.C.D.
5.如图是某货站传送货物的机器的侧面示意图.,原传送带与地面的夹角为,为了缩短货物传送距离,工人师傅欲增大传送带与地面的夹角,使其由改为,原传送带长为.则新传送带的长度为( )
A.B.C.D.无法计算
6.如图,在菱形中,,,是的中点,将绕点逆时针旋转至点与点重合,此时点旋转至处,则点在旋转过程中形成的、线段、点在旋转过程中形成的与线段所围成的阴影部分的面积为( )
A.B.C.D.
7.若关于x的一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是( )
A.k≥﹣1且k≠0B.k≥﹣1C.k≤1D.k≤1且k≠0
8.某学校组织创城知识竞赛,共设有20道试题,其中有:社会主义核心价值观试题3道,文明校园创建标准试题6道,文明礼貌试题11道.学生小宇从中任选一道试题作答,他选中文明校园创建标准试题的概率是( )
A.B.C.D.
9.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()
A.B.C.D.
10.若,则的值为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,⊙O是等边△ABC的外接圆,弦CP交AB于点D,已知∠ADP=75°,则∠POB等于_______°.
12.在半径为3cm的圆中,长为cm的弧所对的圆心角的度数为____________.
13.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为_____.
14.如图,⊙的半径于点,连接并延长交⊙于点,连接.若,则的长为 ___ .
15.如图,在△ABC中,点DE分别在ABAC边上,DE∥BC,∠ACD=∠B,若AD=2BD,BC=6.则线段CD的长为______
16.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
17.如图,在中,,若,则__________.
18.如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限内的点C分别在双曲线和的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:
①阴影部分的面积为;
②若B点坐标为(0,6),A点坐标为(2,2),则;
③当∠AOC=时,;
④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是 ____________(填写正确结论的序号).
三、解答题(共66分)
19.(10分)如图,已知一次函数与反比例函数的图象交于A,B两点.
(1)求的面积;
(2)观察图象,可知一次函数值小于反比例函数值的x的取值范围是 .
20.(6分)我国互联网发展走到了世界的前列,尤其是电子商务,据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y(件)与销售单价x(元)之间的函数关系如图所示:
(1)当销售单价定为50元时,求每月的销售件数;
(2)设每月获得的利润为W(元),求利润的最大值;
(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量)
21.(6分)如图,四边形ABCD中,AB∥CD,CD≠AB,点F在BC上,连DF与AB的延长线交于点G.
(1)求证:CF•FG=DF•BF;
(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=12,EF=8,求CD的长.
22.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣4,1),B(﹣1,2),C(﹣2,4).
(1)将△ABC向右平移4个单位后得到△A1B1C1,请画出△A1B1C1,并写出点B1的坐标;
(2)△A2B2C2和△A1B1C1关于原点O中心对称,请画出△A2B2C2,并写出点C2的坐标;
(3)连接点A和点B2,点B和点A2,得到四边形AB2A2B,试判断四边形AB2A2B的形状(无须说明理由).
23.(8分)如图,在平面直角坐标系中,直线分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE,动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.
(1)求点B的坐标和OE的长;
(2)设点Q2为(m,n),当tan∠EOF时,求点Q2的坐标;
(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.
①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.
②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.
24.(8分)孝感商场计划在春节前50天里销售某品牌麻糖,其进价为18元/盒.设第天的销售价格为(元/盒),销售量为(盒).该商场根据以往的销售经验得出以下的销售规律:①当时,;当时,与满足一次函数关系,且当时,;时,.②与的关系为.
(1)当时,与的关系式为 ;
(2)为多少时,当天的销售利润(元)最大?最大利润为多少?
25.(10分)用配方法解方程:x2﹣6x=1.
26.(10分)如图,抛物线与轴交于点和点,与轴交于点,其对称轴为,为抛物线上第二象限的一个动点.
(1)求抛物线的解析式并写出其顶点坐标;
(2)当点在运动过程中,求四边形面积最大时的值及此时点的坐标.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、A
4、D
5、B
6、C
7、A
8、B
9、B
10、A
二、填空题(每小题3分,共24分)
11、90
12、
13、1
14、
15、
16、
17、6
18、②④
三、解答题(共66分)
19、(1)4;(1)或
20、(1)500件;(2)利润的最大值为1;(3)每月的成本最少需要10000元.
21、(1)证明见解析;(2)1.
22、(1)如图,△A1B1C1为所作;见解析;点B1的坐标为(3,2);(2)如图,△A2B2C2为所作;见解析;点C2的坐标为(﹣2,﹣4);(3)如图,四边形AB2A2B为正方形.
23、(1)(8,0),;(2)(6,1);(3)①,②的长为或.
24、(1);(2)32, 2646元.
25、x1=3﹣,x2=3+.
26、(1),(-1,4);(2),P(,)
齐齐哈尔市重点中学2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份齐齐哈尔市重点中学2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年菏泽市重点中学九上数学期末质量跟踪监视试题含答案: 这是一份2023-2024学年菏泽市重点中学九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了下列方程属于一元二次方程的是,下列说法正确的是等内容,欢迎下载使用。
2023-2024学年淮南市重点中学九上数学期末质量跟踪监视试题含答案: 这是一份2023-2024学年淮南市重点中学九上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。