2023-2024学年吉林省吉林市九上数学期末调研模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.己知是一元二次方程的一个根,则的值为( )
A.1B.-1或2C.-1D.0
2.如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是( )
A.10B.12C.20D.24
3.如图平行四边变形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则S△BFE∶S△FDA等于( )
A.2∶5B.4∶9C.4∶25D.2∶3
4.如图1所示的是山西大同北都桥的照片,桥上面的部分是以抛物线为模型设计而成的,从正面观察该桥的上面部分是一条抛物线,如图2,若,以所在直线为轴,抛物线的顶点在轴上建立平面直角坐标系,则此桥上半部分所在抛物线的解析式为( )
A.B.
C.D.
5.数学兴趣小组的同学们想利用树影测量树高.课外活动时他们在阳光下测得一根长为1米的竹竿的影子是0.9米,同一时刻测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的台阶上,且影子的末端刚好落在最后一级台阶的上端C处,他们测得落在地面的影长为1.1米,台阶总的高度为1.0米,台阶水平总宽度为1.6米.则树高为( )
A.3.0mB.4.0mC.5.0mD.6.0m
6.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有人,买鸡的钱数为,依题意可列方程组为( )
A.B.
C.D.
7.如图,在边长为1的小正方形网格中,点都在这些小正方形的顶点上,则的余弦值是( )
A.B.C.D.
8.下列函数中,图象不经过点(2,1)的是( )
A.y=﹣x2+5B.y=C.y=xD.y=﹣2x+3
9.函数y=ax2+1与(a≠0)在同一平面直角坐标系中的图象可能是( )
A.B.C.D.
10.在直角坐标系中,点关于坐标原点的对称点的坐标为( )
A.B. C.D.
二、填空题(每小题3分,共24分)
11.如图,若菱形ABCD的边长为2cm,∠A=120°,将菱形ABCD折叠,使点A恰好落在菱形对角线的交点O处,折痕为EF,则EF=_____cm,
12.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.
13.用纸板制作了一个圆锥模型,它的底面半径为1,高为,则这个圆锥的侧面积为_________.
14.在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了______次.
15.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为____.
16.如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(4,0),则点E的坐标是_____.
17.一运动员推铅球,铅球经过的路线为如图所示的抛物线,点(4,3)为该抛物线的顶点,则该抛物线所对应的函数式为_____.
18.若两个相似三角形对应角平分线的比是,它们的周长之和为,则较小的三角形的周长为_________.
三、解答题(共66分)
19.(10分)已知关于的一元二次方程.
(1)若此方程有两个实数根,求的最小整数值;
(2)若此方程的两个实数根为,,且满足,求的值.
20.(6分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.
(1)求小明选择去白鹿原游玩的概率;
(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.
21.(6分)(1)如图,已知AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点.连接OM,以O为圆心,OM为半径作小圆⊙O.判断CD与小圆⊙O的位置关系,并说明理由;
(2)已知⊙O,线段MN,P是⊙O外一点.求作射线PQ,使PQ被⊙O截得的弦长等于MN.
(不写作法,但保留作图痕迹)
22.(8分)如图,在平面直角坐标系中,抛物线 的顶点为,且经过点与轴交于点,连接,,.
(1)求抛物线对应的函数表达式;
(2)点为该抛物线上点与点之间的一动点.
①若,求点的坐标.
②如图②,过点作轴的垂线,垂足为,连接并延长,交于点,连接延长交于点.试说明为定值.
23.(8分)如图,在电线杆上的点处引同样长度的拉线,固定电线杆,在离电线杆6米处安置测角仪(其中点、、、在同一条直线上),在处测得电线杆上点处的仰角为,测角仪的高为米.
(1)求电线杆上点离地面的距离;
(2)若拉线,的长度之和为18米,求固定点和之间的距离.
24.(8分)在下列网格图中,每个小正方形的边长均为1个单位. Rt△ABC中,∠C=90°,AC=3,BC=4,△ABC以A为旋转中心,沿顺时针方向旋转90°后得到△AB1C1;
(1)作出△AB1C1;(不写画法)
(2)求点C转过的路径长;
(3)求边AB扫过的面积.
25.(10分)如图1,抛物线与轴交于点,与轴交于点.
(1)求抛物线的表达式;
(2)点为抛物线的顶点,在轴上是否存在点,使?若存在,求出点的坐标;若不存在,说明理由;
(3)如图2,位于轴右侧且垂直于轴的动直线沿轴正方向从运动到(不含点和点),分别与抛物线、直线以及轴交于点,过点作于点,求面积的最大值.
26.(10分)已知在平面直角坐标系中位置如图所示.
(1)画出绕点按顺时针方向旋转后的;
(2)求点旋转到点所经过的路线长(结果保留).
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、C
4、A
5、B
6、D
7、D
8、D
9、B
10、D
二、填空题(每小题3分,共24分)
11、
12、25%
13、
14、2
15、、 、
16、(6,6).
17、y=-(x﹣4)2+1
18、6cm
三、解答题(共66分)
19、(1)-4;(2)
20、(1);(2)
21、(1)相切,证明见解析;(2)答案见解析
22、(1);(2)①点的坐标为,;②,是定值.
23、(1)米(2)米
24、(1)见解析;(2)π;(3)π
25、(1);(2)不存在,理由见解析;(3)最大值为.
26、(1)见解析;(2)
吉林省吉林市舒兰市2023-2024学年数学九上期末调研模拟试题含答案: 这是一份吉林省吉林市舒兰市2023-2024学年数学九上期末调研模拟试题含答案,共7页。试卷主要包含了已知,《孙子算经》中有一道题,在平面直角坐标系中,点等内容,欢迎下载使用。
吉林省吉林市吉化九中学2023-2024学年数学九上期末检测模拟试题含答案: 这是一份吉林省吉林市吉化九中学2023-2024学年数学九上期末检测模拟试题含答案,共8页。试卷主要包含了函数y=ax2﹣1与y=ax,某排球队名场上队员的身高,下列事件等内容,欢迎下载使用。
2023-2024学年吉林省吉林市第七中学九上数学期末经典模拟试题含答案: 这是一份2023-2024学年吉林省吉林市第七中学九上数学期末经典模拟试题含答案,共9页。试卷主要包含了分式方程的根是,如图所示的几何体的左视图为等内容,欢迎下载使用。