2023-2024学年上海市长宁、金山区九年级数学第一学期期末经典试题含答案
展开
这是一份2023-2024学年上海市长宁、金山区九年级数学第一学期期末经典试题含答案,共8页。试卷主要包含了下列事件中是必然事件的是,下列图形中,是相似形的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,在△ABC中,csB=,sinC=,AC=5,则△ABC的面积是( )
A. B.12C.14D.21
2.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )
A.4B..5C.6D.8
3.如图所示,线段与交于点,下列条件中能判定的是( )
A.,,,B.,,,
C.,,,D.,,,
4.下列事件中是必然事件的是( )
A.打开电视正在播新闻
B.随机抛掷一枚质地均匀的硬币,落地后正面朝上
C.在等式两边同时除以同一个数(或式子),结果仍相等
D.平移后的图形与原图形中的对应线段相等
5.下列图形中,是相似形的是( )
A.所有平行四边形B.所有矩形C.所有菱形D.所有正方形
6.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为( )
A.30°B.40°C.45°D.50°
7.如图,在菱形中,已知,,以为直径的与菱形相交,则图中阴影部分的面积为( )
A.B.C.D.
8.已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为( )
A.21B.20C.19D.18
9.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是
A.相切B.相交C.相离D.不能确定
10.一元二次方程x2﹣3x﹣4=0的一次项系数是( )
A.1B.﹣3C.3D.﹣4
二、填空题(每小题3分,共24分)
11.如图,⊙O的直径AB=20cm,CD是⊙O的弦,AB⊥CD,垂足为E,OE:EB=3:2,则CD的长是________ cm.
12.如图,在△ABC中,D、E分别是边AB、AC上的两点,且DEBC,BD=AE,若AB=12cm,AC=24cm,则AE=_____.
13.反比例函数y=的图象位于第二、四象限,则k的取值范围是_______.
14.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,若小华的身高为1.6米,那么路灯离地面的高度是_____米.
15.如图,请补充一个条件_________:,使△ACB∽△ADE.
16.如图,抛物线(是常数,),与轴交于两点,顶点的坐标是,给出下列四个结论:①;②若,,在抛物线上,则;③若关于的方程有实数根,则;④,其中正确的结论是__________.(填序号)
17.如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y=(k>0,x>0)的图象上,若△OAB的面积为,则k的值为_____.
18.如图,直线与双曲线交于点,点是直线上一动点,且点在第二象限.连接并延长交双曲线与点.过点作轴,垂足为点.过点作轴,垂足为,若点的坐标为,点的坐标为,设的面积为的面积为,当时,点的横坐标的取值范围为_________.
三、解答题(共66分)
19.(10分)如图,为美化中心城区环境,政府计划在长为30米,宽为20米的矩形场地上修建公园.其中要留出宽度相等的三条小路,且两条与平行,另一条与平行,其余部分建成花圃.
(1)若花圃总面积为448平方米,求小路宽为多少米?
(2)已知某园林公司修建小路的造价(元)和修建花圃的造价(元)与修建面积(平方米)之间的函数关系分别为和.若要求小路宽度不少于2米且不超过4米,求小路宽为多少米时修建小路和花圃的总造价最低?
20.(6分)如图,在直角坐标系中,点A的坐标为(-2,0),OB=OA,且∠AOB=120°.
(1)求经过A、O、B三点的抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点C,使△OBC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(3)若点M为抛物线上一点,点N为对称轴上一点,是否存在点M、N使得A、O、M、N构成的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
21.(6分)如图,抛物线与轴交于点,,与轴交于点.
(1)求点,,的坐标;
(2)将绕的中点旋转,得到.
①求点的坐标;
②判断的形状,并说明理由.
(3)在该抛物线对称轴上是否存在点,使与相似,若存在,请写出所有满足条件的点的坐标;若不存在,请说明理由.
22.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在线段BA上以每秒3cm的速度点A运动,同时动点N从点C出发,在线段CB上以每秒2cm的速度向点B运动,其中一点到达终点后,另一点也停止运动.运动时间为t秒,连接MN.
(1)填空:BM= cm.BN= cm.(用含t的代数式表示)
(2)若△BMN与△ABC相似,求t的值;
(3)连接AN,CM,若AN⊥CM,求t的值.
23.(8分)(1)计算:
(2)解方程):
24.(8分)如图,在△ABC中,∠C = 90°,以AC为直径的⊙O交AB于点D,连接OD,点E在BC上, B E=DE.
(1)求证:DE是⊙O的切线;
(2)若BC=6,求线段DE的长;
(3)若∠B=30°,AB =8,求阴影部分的面积(结果保留).
25.(10分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
(1)求这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.
26.(10分)如图,已知一次函数分别交x、y轴于A、B两点,抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一交点为C.
(1)求b、c的值及点C的坐标;
(2)动点P从点O出发,以每秒1个单位长度的速度向点A运动,过P作x轴的垂线交抛物线于点D,交线段AB于点E.设运动时间为t(t>0)秒.
①当t为何值时,线段DE长度最大,最大值是多少?(如图1)
②过点D作DF⊥AB,垂足为F,连结BD,若△BOC与△BDF相似,求t的值.(如图2)
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、C
4、D
5、D
6、A
7、D
8、A
9、B
10、B
二、填空题(每小题3分,共24分)
11、1
12、1cm
13、
14、6.1
15、∠ADE=∠C或∠AED=∠B或
16、①②④
17、1
18、-3
相关试卷
这是一份上海市金山区2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共6页。试卷主要包含了答题时请按要求用笔,下列是一元二次方程有,估计 ,的值应在等内容,欢迎下载使用。
这是一份上海市长宁区2023-2024学年九年级数学第一学期期末统考模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份2023-2024学年上海市长宁区高级中学九年级数学第一学期期末调研试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,把方程化成的形式,则的值分别是,下列方程是一元二次方程的是,方程的解是等内容,欢迎下载使用。