搜索
    上传资料 赚现金
    【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 复习专题03+椭圆13种常见考法归类-练习.zip
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 专题03 椭圆13种常见考法归类(原卷版).docx
    • 解析
      【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 专题03 椭圆13种常见考法归类(解析版).docx
    【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 复习专题03+椭圆13种常见考法归类-练习.zip01
    【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 复习专题03+椭圆13种常见考法归类-练习.zip02
    【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 复习专题03+椭圆13种常见考法归类-练习.zip03
    【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 复习专题03+椭圆13种常见考法归类-练习.zip01
    【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 复习专题03+椭圆13种常见考法归类-练习.zip02
    【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 复习专题03+椭圆13种常见考法归类-练习.zip03
    还剩20页未读, 继续阅读
    下载需要35学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 复习专题03+椭圆13种常见考法归类-练习.zip

    展开
    这是一份【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 复习专题03+椭圆13种常见考法归类-练习.zip,文件包含寒假作业苏教版2019高中数学高二寒假巩固提升训练专题03椭圆13种常见考法归类原卷版docx、寒假作业苏教版2019高中数学高二寒假巩固提升训练专题03椭圆13种常见考法归类解析版docx等2份试卷配套教学资源,其中试卷共96页, 欢迎下载使用。

    思维导图
    核心考点聚焦
    考点一、求椭圆的标准方程
    考点二、点与椭圆的位置关系
    考点三、椭圆的定义及其应用
    (一)根据椭圆的方程求参数的范围
    (二)椭圆的焦点三角形问题
    考点四、求椭圆的离心率
    (一)求椭圆的离心率
    (二)求椭圆的离心率的取值范围
    (三)由椭圆的离心率求参数(范围)
    考点五、与椭圆有关的轨迹问题
    考点六、直线与椭圆的位置关系
    考点七、弦长及中点弦问题
    (一)弦长问题
    (二)中点弦问题
    考点八、求椭圆的参数或范围问题
    考点九、求椭圆的最值问题
    考点十、椭圆的定点、定值问题
    考点十一、椭圆中的向量问题
    考点十二、椭圆的实际应用问题
    考点十三、与椭圆有关的综合问题
    知识点1 椭圆的定义
    平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
    注:在椭圆的定义中必须要注意以下两个问题
    (1)定义中到两定点的距离之和是常数,而不能是变量.
    (2)常数(2a)必须大于两定点间的距离,否则轨迹不是椭圆.
    ①若,M的轨迹为线段;
    ②若,M的轨迹无图形
    知识点2 椭圆的方程及简单几何性质
    知识点3 椭圆的焦点三角形
    椭圆上的一点与两焦点所构成的三角形称为焦点三角形.解决焦点三角形问题常利用椭圆的定义和正弦定理、余弦定理.
    以椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)上一点P(x0,y0)(y0≠0)和焦点F1(-c,0),F2(c,0)为顶点的△PF1F2中,若∠F1PF2=θ,则
    (1)椭圆的定义:|PF1|+|PF2|=2a.
    (2)余弦定理:4c2=|PF1|2+|PF2|2-2|PF1||PF2|·cs θ.
    (3)面积公式:S△PF1F2=eq \f(1,2)|PF1||PF2|·sin θ,当|y0|=b,即P为短轴端点时,S△PF1F2取最大值,为bc.
    重要结论:S△PF1F2=
    推导过程:由余弦定理得|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|·cs θ得
    由三角形的面积公式可得
    S△PF1F2=
    =
    注:S△PF1F2===(是三角形内切圆的半径)
    (4)焦点三角形的周长为2(a+c).
    (5)在椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)中,F1,F2是椭圆的两个焦点,P是椭圆上任意的一点,当点P在短轴端点时,最大.
    知识点4 点与椭圆的位置关系
    点P(x0,y0)与椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的位置关系:
    点P在椭圆上⇔eq \f(x\\al(2,0),a2)+eq \f(y\\al(2,0),b2)=1;点P在椭圆内部⇔eq \f(x\\al(2,0),a2)+eq \f(y\\al(2,0),b2)<1;点P在椭圆外部⇔eq \f(x\\al(2,0),a2)+eq \f(y\\al(2,0),b2)>1.
    知识点5 直线与椭圆的位置关系
    直线y=kx+m与椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的位置关系,判断方法:
    联立eq \b\lc\{\rc\ (\a\vs4\al\c1(y=kx+m,,\f(x2,a2)+\f(y2,b2)=1,))消y得一元二次方程.
    当Δ>0时,方程有两解,直线与椭圆相交;
    当Δ=0时,方程有一解,直线与椭圆相切;
    当Δ<0时,方程无解,直线与椭圆相离.
    知识点6 直线与椭圆相交的弦长公式
    1.定义:连接椭圆上两个点的线段称为椭圆的弦.
    2.求弦长的方法
    (1)交点法:将直线的方程与椭圆的方程联立,求出两交点的坐标,然后运用两点间的距离公式来求.
    (2)根与系数的关系法:
    如果直线的斜率为k,被椭圆截得弦AB两端点坐标分别为(x1,y1),(x2,y2),则弦长公式为:
    |AB|=eq \r(1+k2)·eq \r(x1+x22-4x1x2)= eq \r(1+\f(1,k2))·eq \r(y1+y22-4y1y2).
    注:(1)已知弦是椭圆()的一条弦,中点坐标为,则的斜率为,运用点差法求的斜率,设,;、都在椭圆上,
    两式相减得:,
    即 ,故
    (2)弦的斜率与弦中心和椭圆中心的连线的斜率之积为定值:
    1、确定椭圆的方程包括“定位”和“定量”两个方面
    (1)“定位”是指确定与坐标系的相对位置,在中心为原点的前提下,确定焦点位于哪条坐标轴上,以判断方程的形式;
    (2)“定量”是指确定a2,b2的具体数值,常根据条件列方程求解.
    2、椭圆定义的应用技巧
    (1)椭圆的定义具有双向作用,即若|MF1|+|MF2|=2a(2a>|F1F2|),则点M的轨迹是椭圆;反之,椭圆上任意一点M到两焦点的距离之和必为2a.
    (2)直线过左焦点与椭圆相交于A、B两点,则的周长为4a,即(直线过右焦点亦同).
    (3)涉及焦点三角形面积时,可把|PF1|·|PF2|看作一个整体,运用|PF1|2+|PF2|2=(|PF1|+|PF2|)2-2|PF1|·|PF2|及余弦定理求出|PF1|·|PF2|,而无需单独求解.
    3、解决与椭圆有关的轨迹问题的三种方法
    (1)直接法:直接法是求轨迹方程的最基本的方法,根据所满足的几何条件,将几何条件{M|p(M)}直接翻译成x,y的形式,即F(x,y)=0,然后进行等价变换,化简为f(x,y)=0.
    (2)定义法:用定义法求椭圆方程的思路是:先观察、分析已知条件,看所求动点轨迹是否符合椭圆的定义.若符合椭圆的定义,则用待定系数法求解即可.
    (3)相关点法:有些问题中的动点轨迹是由另一动点按照某种规律运动而形成的,只要把所求动点的坐标“转移”到另一个动点在运动中所遵循的条件中去,即可解决问题,这种方法称为相关点法.
    4、利用椭圆的几何性质求标准方程的思路
    利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:
    (1)确定焦点位置;
    (2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);
    (3)根据已知条件构造关于参数的关系式,利用方程(组)求参数.列方程(组)时常用的关系式有b2=a2-c2,e=eq \f(c,a)等.
    5、点P(x0,y0)与椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的位置关系:
    点P在椭圆上⇔eq \f(x\\al(2,0),a2)+eq \f(y\\al(2,0),b2)=1;点P在椭圆内部⇔eq \f(x\\al(2,0),a2)+eq \f(y\\al(2,0),b2)<1;点P在椭圆外部⇔eq \f(x\\al(2,0),a2)+eq \f(y\\al(2,0),b2)>1.
    6、求椭圆离心率及范围的两种方法
    (1)直接法:若已知a,c可直接利用e=eq \f(c,a)求解.若已知a,b或b,c可借助于a2=b2+c2求出c或a,再代入公式e=eq \f(c,a)求解.
    (2)方程法:若a,c的值不可求,则可根据条件建立a,b,c的关系式,借助于a2=b2+c2,转化为关于a,c的齐次方程或不等式,再将方程或不等式两边同除以a的最高次幂,得到关于e的方程或不等式,即可求得e的值或范围.
    7、判断直线与椭圆的位置关系
    通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则Δ>0⇔直线与椭圆相交;Δ=0⇔直线与椭圆相切;Δ<0⇔直线与椭圆相离.
    8、解决椭圆中点弦问题的两种方法
    (1)根与系数关系法:联立直线方程和椭圆方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;
    (2)点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆方程,然后作差,构造出中点坐标和斜率的关系,具体如下:已知A(x1,y1),B(x2,y2)是椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)上的两个不同的点,M(x0,y0)是线段AB的中点,
    则eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(x\\al(2,1),a2)+\f(y\\al(2,1),b2)=1, ①,\f(x\\al(2,2),a2)+\f(y\\al(2,2),b2)=1, ②))
    由①-②,得eq \f(1,a2)(xeq \\al(2,1)-xeq \\al(2,2))+eq \f(1,b2)(yeq \\al(2,1)-yeq \\al(2,2))=0,变形得eq \f(y1-y2,x1-x2)=-eq \f(b2,a2)·eq \f(x1+x2,y1+y2)=-eq \f(b2,a2)·eq \f(x0,y0),即kAB=-eq \f(b2x0,a2y0).
    9、求与椭圆有关的最值、范围问题的方法
    (1)定义法:利用定义转化为几何问题处理.
    (2)数形结合法:利用数与形的结合,挖掘几何特征,进而求解.
    (3)函数法:探求函数模型,转化为函数的最值问题,借助函数的单调性、基本不等式等求解,注意椭圆的范围.
    10、解决和椭圆有关的实际问题的思路(数学抽象)
    (1)通过数学抽象,找出实际问题中涉及的椭圆,将原问题转化为数学问题.
    (2)确定椭圆的位置及要素,并利用椭圆的方程或几何性质求出数学问题的解.
    (3)用解得的结果说明原来的实际问题.
    考点剖析
    考点一、求椭圆的标准方程
    1.设椭圆的左、右焦点分别为,上顶点为B.若,则该椭圆的方程为( )
    A.B.C.D.
    2.若椭圆过点,则椭圆方程为( )
    A.B.
    C.D.
    3.已知直线经过椭圆的顶点和焦点,则椭圆的标准方程为( )
    A.B.C.D.
    4.过点且与椭圆有相同焦点的椭圆方程为( )
    A.B.
    C.D.
    5.已知椭圆C:,四点,,,中恰有三点在椭圆上,则椭圆C的标准方程为( )
    A.B.C.D.
    6.已知,是椭圆的焦点,过且垂直于轴的直线交椭圆于,两点,且,则椭圆的方程为( )
    A.B.
    C.D.
    考点二、点与椭圆的位置关系
    7.若点在椭圆上,则下列说法正确的是( )
    A.点不在椭圆上B.点不在椭圆上
    C.点在椭圆上D.无法判断上述点与椭圆的关系
    8.若点在椭圆的外部,则的取值范围为( )
    A. B.
    C. D.
    9.已知直线与椭圆恒有公共点,则实数的取值范围为___________.
    考点三、椭圆的定义及其应用
    根据椭圆的方程求参数的范围
    10.“”是“方程表示椭圆”的( )
    A.充分不必要条件B.必要不充分条件
    C.充要条件D.既不充分也不必要条件
    11.设表示的是椭圆;,则p是成立的( )
    A.充分不必要条件B.必要不充分条件
    C.充分必要条件D.既不充分也不必要条件
    12.已知方程表示椭圆,则的取值范围为( )
    A.且B.且
    C. D.
    13.若方程表示焦点在轴上的椭圆,则实数的取值范围是( )
    A.B.
    C.或D.或
    14.若方程表示椭圆,则下面结论正确的是( )
    A.B.椭圆的焦距为
    C.若椭圆的焦点在轴上,则D.若椭圆的焦点在轴上,则
    椭圆的焦点三角形问题
    15.已知椭圆的左,右两焦点为和,P为椭圆上一点,且,则( )
    A.8B.12C.16D.64
    16.已知的顶点在椭圆上,顶点是椭圆的一个焦点,且椭圆的另外一个焦点在边上,则的周长是( )
    A.12B.C.16D.10
    17.已知椭圆的方程为,若点在第二象限,且,则的面积( ).
    A.B.C.D.
    18.已知,是椭圆的两个焦点,P为椭圆C上一点,且,若的面积为,则( )
    A.9B.3C.4D.8
    19.设、为椭圆的左、右焦点,动点P在椭圆上,当面积最大时,的值等于( )
    A.B.C.0D.1
    20.已知,是椭圆的两个焦点,P为椭圆上一点,且,则的内切圆的半径( )
    A.1B.C.D.2
    考点四、求椭圆的离心率
    求椭圆的离心率
    21.设,是椭圆的两个焦点,为直线上一点, 是底角为的等腰三角形,则的离心率为_______.
    22.设椭圆的左、右焦点分别为、,P是C上的点,,,则C的离心率为( ).
    A.B.C.D.
    23.已知椭圆的左、在顶点分别为,且以线段为直径的圆与直线相切,则的离心率为( )
    A.B.C.D.
    24.已知椭圆的下焦点,M点在椭圆C上,线段MF与圆相切于点N,且,则椭圆C的离心率为( )
    A.B.C.D.
    25.已知椭圆()的一条弦所在的直线方程是,弦的中点坐标是,则椭圆的离心率是( )
    A.B.C.D.
    求椭圆的离心率的取值范围
    26.已知椭圆的右焦点为F,短轴的一个端点为M,直线交椭圆E于A,B两点.若,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是( )
    A.B.C.D.
    27.已知椭圆的左右焦点为,若椭圆上恰好有6个不同的点,使得为等腰三角形,则椭圆C的离心率的取值范围是( )
    A.B.C.D.
    28.已知,是椭圆的左、右焦点,若椭圆C上存在一点P使得,则椭圆C的离心率e的取值范围是( )
    A.B.
    C.D.
    由椭圆的离心率求参数(范围)
    29.已知椭圆的离心率为,则( )
    A.B.C.D.
    30.设是椭圆的离心率,且,则实数的取值范围是( )
    A.B.C.D.
    31.设椭圆的离心率为,则“”是“”的( )
    A.充分不必要条件B.必要不充分条件
    C.充要条件D.既不充分也不必要条件
    32.设椭圆的离心率分别为.若,则( )
    A.B.C.D.
    考点五、与椭圆有关的轨迹问题
    33.若动点满足方程,则动点P的轨迹方程为( )
    A.B.C.D.
    34.在中,已知,若,且满足,则顶点的轨迹方程是( )
    A.B.
    C.D.
    35.已知圆,圆,动圆M与圆外切,同时与圆内切,则动圆圆心M的轨迹方程为( )
    A.B.
    C.D.
    36.已知为圆的一个动点,定点,线段的垂直平分线交线段于点,则点的轨迹方程为( )
    A.B.
    C.D.
    37.已知圆:,从这个圆上任意一点向轴作垂线段(在轴上),在直线上且 ,则动点的轨迹方程是( )
    A.B.
    C.D.
    考点六、直线与椭圆的位置关系
    38.已知直线,椭圆,则直线与椭圆的位置关系是( )
    A.相交B.相切C.相离D.无法确定
    39.已知直线,椭圆.若直线l与椭圆C交于A,B两点,则线段AB的中点的坐标为( )
    A.B.
    C.D.
    40.直线与曲线的公共点的个数是( ).
    A.1B.2C.3D.4
    考点七、弦长及中点弦问题
    弦长问题
    41.已知椭圆的左、右焦点分别为、,过且斜率为1的直线交椭圆于A、两点,则等于( )
    A.B.C.D.
    42.已知椭圆,过左焦点作倾斜角为的直线交椭圆于、两点,则弦的长为_________.
    43.已知椭圆C的两个焦点分别是,,并且经过点.
    (1)求椭圆C的标准方程;
    (2)若直线与椭圆C相交于A,B两点,当线段AB的长度最大时,求直线l的方程.
    44.已知椭圆的焦点坐标为、,点为椭圆上一点.
    (1)求椭圆的标准方程;
    (2)经过点且倾斜角为的直线与椭圆相交于、两点,为坐标原点,求的面积.
    中点弦问题
    45.椭圆与直线相交的弦被M点平分,则M点的坐标为( )
    A.B.C.D.
    46.若椭圆 的弦中点坐标为, 则直线的斜率为( )
    A.B.C.D.
    47.已知椭圆的弦被点平分,则这条弦所在的直线方程为______.
    48.已知椭圆的右焦点为,过作直线交椭圆于A、B陃点,若弦中点坐标为,则椭圆的方程为( )
    A.B.
    C.D.
    49.椭圆mx2+ny2=1与直线y=1-x交于M,N两点,过原点与线段MN中点的直线的斜率为,则等于( )
    A.B.C.D.
    考点八、求椭圆的参数或范围问题
    50.设点,分别为椭圆的左,右焦点,点P是椭圆C上任意一点,若使得成立的点恰好是4个,则实数m的一个取值可以为( )
    A.0B.1C.2D.3
    51.设分别为椭圆的上、下顶点,若在椭圆上存在点,满足,则实数的取值范围为( )
    A.B.
    C.D.
    52.已知椭圆,若椭圆上存在两点、关于直线对称,则的取值范围是( )
    A.B.C.D.
    考点九、求椭圆的最值问题
    53.设是椭圆上的一个动点,定点,则的最大值是( )
    A.B.1C.3D.9
    54.已知点是椭圆上一点,求点P到点的距离的取值范围.
    55.若为椭圆上的一点,,分别是椭圆的左、右焦点,则的最大值为( )
    A.B.C.D.
    56.已知椭圆,直线,则椭圆上的点到直线的最近距离为______.
    考点十、椭圆的定点、定值问题
    57.已知椭圆离心率为,焦距为.
    (1)求的方程;
    (2)过点分别作斜率和为的两条直线与,设交于、两点,交于、两点,、的中点分别为、.求证:直线过定点.
    58.已知椭圆C:过点,椭圆C离心率为,其左右焦点分别为,,上下顶点为,.
    (1)求椭圆C的方程;
    (2)点Q是椭圆C上的一个动点,求面积的最大值;
    (3)若M,N为椭圆C上相异两点(均不同于点),,的斜率分别是,,若.求证:直线MN必过定点,并求出定点坐标.
    59.已知椭圆C:过点.右焦点为F,纵坐标为的点M在C上,且AF⊥MF.
    (1)求C的方程;
    (2)设过A与x轴垂直的直线为l,纵坐标不为0的点P为C上一动点,过F作直线PA的垂线交l于点Q,证明:直线PQ过定点.
    60.己知椭圆,过点.
    (1)求C的方程;
    (2)若不过点的直线l与C交于M,N两点,且满足,试探究:l是否过定点,若是,求出定点坐标;若不是,请说明理由.
    61.已知椭圆经过点,且离心率为.
    (1)求椭圆E的方程;
    (2)若经过点,且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为定值.
    62.已知椭圆的离心率为,且经过点.
    (1)求椭圆的方程;
    (2)若直线与椭圆交于两点,为坐标原点,直线的斜率之积等于,试探求的面积是否为定值,并说明理由.
    63.已知椭圆的左、右顶点分别为,且,离心率为,为坐标原点.
    (1)求椭圆的方程;
    (2)设是椭圆上不同于的一点,直线与直线分别交于点 .证明:以线段为直径作圆被轴截得的弦长为定值,并求出这个定值.
    考点十一、椭圆中的向量问题
    64.已知椭圆的右焦点为,离心率.
    (1)求的方程;
    (2)过点的直线与椭圆交于两点,若,求的方程.
    65.已知,是椭圆M:的左右焦点.
    (1)若C是椭圆上一点,求的最小值;
    (2)直线与椭圆M交于A,B两点,O是坐标原点.椭圆M上存在点P使得四边形OAPB为平行四边形,求m的值.
    考点十二、椭圆的实际应用问题
    66.某海域有两个岛屿,B岛在A岛正东40海里处,经多年观察研究发现,某种鱼群洄游的路线像一个椭圆,其焦点恰好是两岛.曾有渔船在距A岛正西20海里发现过鱼群.某日,研究人员在两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),两岛收到鱼群反射信号的时间比为.你能否确定鱼群此时分别与两岛的距离?
    67.如图是一个椭圆形拱桥,当水面在处时,在如图所示的截面里,桥洞与其倒影恰好构成一个椭圆.此时拱顶离水面,水面宽,那么当水位上升时,水面宽度为( )
    A.B.C.D.
    68.某高速公路隧道设计为单向三车道,每条车道宽4米,要求通行车辆限高5米,隧道全长1.5千米,隧道的断面轮廓线近似地看成半个椭圆形状(如图所示).
    (1)若最大拱高为6米,则隧道设计的拱宽至少是多少米?(结果取整数)
    (2)如何设计拱高和拱宽,才能使半个椭圆形隧道的土方工程量最小?(结果取整数)
    参考数据:,椭圆的面积公式为,其中,分别为椭圆的长半轴和短半轴长.
    考点十三、与椭圆有关的综合问题
    69.【多选】已知为坐标原点,椭圆的中心为原点,焦点在坐标轴上,点,均在椭圆上,则( )
    A.椭圆的离心率为
    B.椭圆的短轴长为
    C.直线 与椭圆相交
    D.若点在椭圆上,中点坐标为,则直线的方程为
    70.【多选】设,为椭圆的左,右焦点,直线过交椭圆于A,B两点,则以下说法正确的是( )
    A.的周长为定值8B.的面积最大值为
    C.的最小值为8D.存在直线l使得的重心为
    过关检测
    一、单选题
    1.(2023上·河南省直辖县级单位·高二济源市第四中学校考期末)已知,是椭圆的两个焦点,过且垂直于轴的直线交于,两点,且,则的方程为( )
    A.B.C.D.
    2.(2023上·贵州黔东南·高二校考期末)已知椭圆的右焦点为,点和所连线段的中点在椭圆上,则椭圆的离心率为( )
    A.B.C.D.
    3.(2023上·浙江·高二校联考期中)已知分别是椭圆的左、右两个焦点,若该椭圆上存在点满足,则实数的取值范围是( )
    A.B.C.D.
    4.(2023上·陕西渭南·高三校考期末)已知椭圆的两焦点分别为、.若椭圆上有一点P,使,则的取值范围是( ).
    A.B.C.D.
    5.(2023上·湖北·高二宜昌市一中校联考阶段练习)若点为椭圆上的点,、为其左右焦点,且,则的面积为( )
    A.1B.C.D.2
    6.(2023上·黑龙江哈尔滨·高三哈尔滨三中校考期末)已知椭圆的长轴长是短轴长的2倍,过椭圆的上焦点作斜率为的直线,直线交椭圆于两点,若,则( )
    A.B.C.D.
    7.(2023上·四川攀枝花·高二统考期末)已知、分别为椭圆:的左、右焦点,为椭圆上一点,以为圆心,为半径的圆交轴于、两点,则的最大值为( )
    A.4B.C.D.
    8.(2023上·安徽淮北·高二淮北一中校考阶段练习)已知是椭圆上的动点,则点到直线的距离的最大值为( )
    A.B.C.D.
    9.(2023上·甘肃白银·高二甘肃省靖远县第一中学校考期末)已知椭圆的左、右焦点分别为为椭圆上第一象限的点,直线与轴相交于点,若(为坐标原点),则( )
    A.B.C.D.
    二、多选题
    10.(2023·江西南昌·统考三模)如图所示,“嫦娥五号”月球探测器飞行到月球附近时,首先在以月球球心F为圆心的圆形轨道Ⅰ上绕月球飞行,然后在点P处变轨进入以F为一焦点的椭圆轨道Ⅱ上绕月球飞行,最后在点Q处变轨进入以F为圆心的圆形轨道Ⅲ上绕月球飞行.设圆形轨道Ⅰ的半径为,圆形轨道Ⅲ的半径为,则下列结论中正确的是( )

    A.轨道Ⅱ的焦距为
    B.轨道Ⅱ的长轴长为
    C.若不变,r越大,轨道Ⅱ的短轴长越小
    D.若不变,越大,轨道Ⅱ的离心率越大
    11.(2023上·江苏南通·高二统考期末)已知,分别为椭圆C:的左,右焦点,A为C的上顶点,过且垂直于的直线与C交于D,E两点,则( )
    A.椭圆C的焦距为2B.
    C.的面积为D.的周长为8
    12.(2023上·福建莆田·高二仙游一中校联考期末)已知点是椭圆上一点,为其左、右焦点,且△的面积为3,则下列说法正确的是( )
    A.P点到轴的距离为B.
    C.△的周长为D.△的内切圆半径为
    13.(2023上·福建福州·高二福建省福州外国语学校校考期中)已知椭圆:,则下列各选项正确的是( )
    A.若的离心率为,则
    B.若,的焦点坐标为
    C.若,则的长轴长为6
    D.不论取何值,直线都与没有公共点
    三、填空题
    14.(2023上·宁夏银川·高二校考期末)已知椭圆的左、右焦点分别为,,是椭圆上任意一点,则面积的最大值是 .
    15.(2023上·浙江湖州·高三校考期末)已知的顶点和,顶点A在椭圆上,则的值为 .
    16.(2023上·重庆·高二重庆市育才中学校联考阶段练习)已知椭圆:的左、右焦点分别为,,点在椭圆上,且,则 .
    17.(2023上·江苏常州·高二统考期末)已知椭圆的离心率为,左、右焦点分别为,,点在椭圆上,满足的面积为,,过点作的垂线交椭圆于,两点,则的周长为 .
    18.(2023上·黑龙江哈尔滨·高二哈师大附中校考期末)设椭圆的左焦点为,点P在椭圆上且在第一象限,直线与圆相交于两点,若是线段的两个三等分点,则直线的斜率为 .
    四、解答题
    19.(2023上·四川成都·高二校联考期末)已知圆,圆,若动圆M与圆F1外切,与圆F2内切.
    (1)求动圆圆心M的轨迹C的方程;
    (2)直线l与(1)中轨迹C相交于A,B两点,若Q为线段AB的中点,求直线l的方程.
    20.(2023上·陕西延安·高二校考期末)已知椭圆的离心率为,右焦点为.
    (1)求此椭圆的方程;
    (2)若过点F且倾斜角为的直线与此椭圆相交于A、B两点,求|AB|的值.
    21.(2023上·广东汕尾·高三统考期末)已知椭圆经过点,离心率为.
    (1)求椭圆C的方程;
    (2)过点的直线交椭圆于A,B两点,为椭圆C的左焦点,若,求直线的方程.
    22.(2023上·黑龙江佳木斯·高二校考期末)已知椭圆的离心率,其焦点三角形面积的最大值是.
    (1)求椭圆的标准方程;
    (2)过点的直线与椭圆交于两点,是坐标原点,求面积的最大值.
    23.(2023上·江西·高二校联考期中)已知椭圆过点,离心率为.
    (1)求椭圆的方程;
    (2)已知的下顶点为,不过的直线与交于点,线段的中点为,若,试问直线是否经过定点?若经过定点,请求出定点坐标;若不过定点,请说明理由.
    24.(2023·陕西西安·校联考模拟预测)椭圆的两个焦点分别为,,离心率为,为椭圆上任意一点,不在轴上,的面积的最大值为.
    (1)求椭圆的方程;
    (2)过点的直线与椭圆相交于M,N两点,设点,求证:直线,的斜率之和为定值,并求出定值.
    焦点的位置
    焦点在x轴上
    焦点在y轴上
    图形
    标准方程
    eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)
    eq \f(y2,a2)+eq \f(x2,b2)=1(a>b>0)
    范围
    -a≤x≤a且-b≤y≤b
    -b≤x≤b且-a≤y≤a
    顶点
    A1(-a,0),A2(a,0),_ B1(0,-b),B2(0,b)
    A1(0,-a),A2(0,a), B1(-b,0),B2(b,0)
    轴长
    长轴长=eq \a\vs4\al(2a),短轴长=eq \a\vs4\al(2b)
    焦点
    F1(-c,0),F2(c,0)
    F1(0,-c),F2(0,c)
    焦距
    |F1F2|=eq \a\vs4\al(2c)
    对称性
    对称轴x轴和y轴,对称中心(0,0)
    离心率
    e=eq \f(c,a)(0
    相关试卷

    【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 复习专题10+导数10种常见考法归类-练习.zip: 这是一份【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 复习专题10+导数10种常见考法归类-练习.zip,文件包含寒假作业苏教版2019高中数学高二寒假巩固提升训练专题10导数10种常见考法归类原卷版docx、寒假作业苏教版2019高中数学高二寒假巩固提升训练专题10导数10种常见考法归类解析版docx等2份试卷配套教学资源,其中试卷共136页, 欢迎下载使用。

    【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 复习专题09+数列求和6种常见考法归类-练习.zip: 这是一份【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 复习专题09+数列求和6种常见考法归类-练习.zip,文件包含寒假作业苏教版2019高中数学高二寒假巩固提升训练专题09数列求和6种常见考法归类原卷版docx、寒假作业苏教版2019高中数学高二寒假巩固提升训练专题09数列求和6种常见考法归类解析版docx等2份试卷配套教学资源,其中试卷共93页, 欢迎下载使用。

    【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 复习专题08+求数列通项17种常见考法归类-练习.zip: 这是一份【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 复习专题08+求数列通项17种常见考法归类-练习.zip,文件包含寒假作业苏教版2019高中数学高二寒假巩固提升训练专题08求数列通项17种常见考法归类原卷版docx、寒假作业苏教版2019高中数学高二寒假巩固提升训练专题08求数列通项17种常见考法归类解析版docx等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【寒假作业】苏教版2019 高中数学 高二寒假巩固提升训练 复习专题03+椭圆13种常见考法归类-练习.zip
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map