|试卷下载
搜索
    上传资料 赚现金
    09函数的应用-上海市2023-2024学年高一上学期期末数学专题练习(沪教版2020)
    立即下载
    加入资料篮
    09函数的应用-上海市2023-2024学年高一上学期期末数学专题练习(沪教版2020)01
    09函数的应用-上海市2023-2024学年高一上学期期末数学专题练习(沪教版2020)02
    09函数的应用-上海市2023-2024学年高一上学期期末数学专题练习(沪教版2020)03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    09函数的应用-上海市2023-2024学年高一上学期期末数学专题练习(沪教版2020)

    展开
    这是一份09函数的应用-上海市2023-2024学年高一上学期期末数学专题练习(沪教版2020),共20页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。


    一、单选题
    1.(2024上·上海嘉定·高一统考期末)已知函数,若关于的的方程有且仅有两个不同的整数解,则实数的取值范围是( )
    A.B.C.D.
    2.(2023上·上海奉贤·高一校考期末)数学上,常用表示不大于x的最大整数.已知函数,则下列四个命题:
    ①函数在定义域上是奇函数;
    ②函数的零点有无数个;
    ③函数在定义域上的值域是;
    ④不等式解集是.
    以上四个命题正确的有( )个.
    A.0B.1C.2D.3
    3.(2024上·上海虹口·高一统考期末)若在用二分法寻找函数零点的过程中,依次确定了零点所在区间为,则实数和分别等于( )
    A.B.2,3C.D.
    4.(2021上·上海嘉定·高一统考期末)研究科学现象时,往往会先考察一些重要变量之间的因果关系,用数学关系式等数学模型来近似表示,继而通过和现象的比照来判断数学模型的可靠程度,如果误差超过允许范围,则可以( )
    A.重新考虑现象中的变量关系B.构造其它的数学模型
    C.调整现象中的考察变量D.以上皆可
    5.(2023上·上海松江·高一校考期末)关于函数,给出下列两个结论:
    ①方程一定有实数解;
    ②如果方程(为常数)有解,则解的个数一定是偶数.
    则( )
    A.①正确,②正确B.①错误,②错误
    C.①正确,②错误D.①错误,②正确
    6.(2023下·上海黄浦·高一上海市大同中学校考期末)设,,定义域为或,实数集M中的任意实数a,总存在,使得方程无实数解,则集合M可以是( )
    ①;②;③;④
    A.①④B.②③C.①②D.以上皆不是
    7.(2022上·上海徐汇·高一上海市第二中学校考期末)关于x的方程,给出下列四个命题,其中假命题的个数是( ).
    ①存在实数k,使得方程恰有2个不同的实根;
    ②存在实数k,使得方程恰有4个不同的实根;
    ③存在实数k,使得方程恰有5个不同的实根;
    ④存在实数k,使得方程恰有8个不同的实根;
    A.0B.1C.2D.3
    8.(2023下·上海黄浦·高一统考期末)已知,若存在实数,使得方程有无穷多个非负实数解,则的表达式可以为( )
    A.B.
    C.D.
    二、填空题
    9.(2024上·上海·高一上海市向明中学校考期末)已知函数,,若函数和的图像有且仅有1个公共点,则实数的取值范围是
    10.(2024上·上海·高一上海市向明中学校考期末)设函数,若存在唯一的正整数,使得,则实数的取值范围是
    11.(2024上·上海·高一校考期末)已知函数,若函数存在零点,则实数的取值范围是 .
    12.(2024上·上海奉贤·高一统考期末)如果函数在区间上存在满足,则称为函数在区间上的一个均值点.已知函数在上存在均值点,则实数的取值范围是 .
    13.(2024上·上海奉贤·高一统考期末)在有声世界,声强级是表示声强度相对大小,其值为(单位:(分贝)),定义为.其中,为声场中某点的声强度,其单位为(瓦/平方米),为基准值.声强级的声强度是声强级的声强度的 倍.
    14.(2024上·上海·高一上海市进才中学校考期末)方程的根,,则 .
    三、解答题
    15.(2024上·上海宝山·高一上海交大附中校考期末)已知(),函数在区间上有最大值4和最小值1.
    (1)求的值;
    (2)若不等式在上恒成立,求实数的取值范围;
    (3)若方程有两个不相等的实数根,求实数的取值范围.
    16.(2024上·上海·高一上海市向明中学校考期末)已知函数的定义域为,若存在常数,使得对任意的,都有,则称函数具有性质
    (1)若函数具有性质,求:的值;
    (2)设,求证:存在常数,使得具有性质;
    (3)若函数具有性质,且的图像是一条连续不断的曲线,求证:函数在存在零点.
    17.(2024上·上海·高一校考期末)已知函数,记().
    (1)若,解不等式:;
    (2)设为实数,当时,若存在实数,使得成立,求的取值范围;
    (3)记(其中、均为实数),若对于任意的,均有,求正数的最小值及此时、的值.
    参考答案:
    1.B
    【分析】根据绝对值的应用寻找方程成立的条件,再利用数形结合求解参数即可.
    【详解】若关于的的方程有且仅有两个不同的整数解,
    则必有且同时成立,即图象夹在和之间,
    易知,函数的图象大致如图,
    结合图形可知的整数解只有两个,则其中一个为,另一个为,
    所以,且,
    解得,
    故选:B
    2.B
    【分析】举例即可说明①错误;令,结合函数的定义,即可判断②;作差法得出,进而得出.根据取值的特殊性,即可判断③;由不等式可得,根据定义即可判断④.
    【详解】设,
    对于①,易知,,
    所以,.
    故函数在定义域上不是奇函数.故①错误;
    对于②,由可得,,.
    根据函数的定义可得,.故②正确;
    对于③,易知.
    因为恒成立,
    所以,所以.
    综上所述,.
    所以,,即,
    所以,.
    但是根据定义可知,只能取整数,
    所以的值域为内的部分离散的数,而不能取遍内的所有实数.故③错误;
    对于④,因为,
    所以由可得,
    ,,所以.
    根据函数的定义可知,,所以不等式解集是.故④错误.
    综上所述,②正确.
    故选:B.
    3.A
    【分析】根据题意,得到函数在上为单调递增函数,结合二分法的定义和题设条件,得出方程组,即可求解.
    【详解】由函数,
    根据指数函数与反比例函数的性质,可得函数在上为单调递增函数,
    所以函数在至多有一个零点,
    又由依次确定了零点所在区间为,
    可得,即,解得.
    故选:A.
    4.D
    【分析】由数学模型描述变量关系中误差的意义及改进思路判断各项正误.
    【详解】如果误差超过允许范围,即原模型不适合描述变量的关系,
    所以可以重新考虑或调整变量,构造新模型.
    故选:D
    5.C
    【分析】由函数解析式可推出是偶函数,在上单调递增,在上单调递减,结合图形判断各项的正误.
    【详解】令,解得,可知的定义域为,
    且,所以函数是偶函数,
    当时,则,
    因为在上单调递增,且恒成立,所以在上单调递减,
    当时,则,
    因为在上单调递减,且恒成立,所以在上单调递增,
    可得的函数图象如下:

    对于①:方程根的个数即为函数与的交点个数,
    由图象可得:当时,函数与函数的图像一定有交点,
    由对称性可知,当时,函数与函数的图像也一定有交点,故①正确;
    对于②:当时,方程只有1个解,故②错误;
    故选:C.
    【点睛】关键点睛:根据函数解析式确定单调区间,奇偶性,进而结合图象判断各项的正误,注意一次函数的性质和函数对称性的应用.
    6.D
    【分析】根据题意结合函数的定义,利用数形结合的思想处理问题.
    【详解】如下图,集合中的点构成了一个正方形和一条直线,由于,且定义域为,
    故或这两条射线上的点必在图像上,
    当时,必有解;
    当时,可构造函数可如下右图:挖去与集合中的图像交点,选择图像中实心点,
    故存在,使得方程无实数解;
    综上所述:满足条件的范围为.
    故选:D.

    【点睛】方法点睛:对于方程的根的问题,常转化为与的交点问题,数形结合处理问题.
    7.A
    【分析】分别取、、、计算对应方程的解后可得正确的选项.
    【详解】取,则即为,
    故,解得,故①正确.
    取,则即为,故,
    解得,或,故②正确.
    取,则即为,
    故,或解得,或,或,故③正确.
    取,则即为,
    故或,
    解得,或,或,或,故④正确.
    故选:A
    【点睛】本题考查复合方程的解的个数的讨论,解题关键点是根据复合方程的性质将其转化为简单方程的解,本题属于较难题.
    8.B
    【分析】分别分析各选项函数解析式,改写成分段函数,再分析方程的解的情况,即可判断.
    【详解】因为,
    对于A:令,
    则在,上单调递增,在,上单调递减,
    则当时有四个实数根,当或时有两个实数根,
    当时有三个实数根,当时无实数根,故A错误;
    对于B:令,
    所以当时的解集为,故B正确;
    对于C:令,
    则在,上单调递增,在,上单调递减,
    则当时有四个实数根,当或时有两个实数根,
    当时有三个实数根,当时无实数根,故C错误;
    对于D:令,
    显然当时函数在上单调递增,
    故方程不可能有无穷多个非负实数解,故D错误;
    故选:B
    9.
    【分析】依题意有且仅有一根,即,分别考虑该不等式为一次与二次方程的情况,结合二次方程两根关系与对数的定义域列式求解即可.
    【详解】依题意有且仅有一根,即,得,即.
    当时,,满足题意;
    当时,,满足题意;
    当且时,,,,
    若是原方程的根,当且仅当,即,
    若是原方程的根,当且仅当,即,
    故当是原方程的根,不是原方程的根,则,无解,
    当是原方程的根,不是原方程的根,则,解得.
    综上有实数的取值范围是.
    故答案为:
    10.
    【分析】依题意化简可得存在唯一的正整数,使得,再根据函数单调性数形结合列式求解即可.
    【详解】,因为,故则,则存在唯一的正整数,使得.
    又为增函数,故,则,即,解得,即实数的取值范围是.
    故答案为:
    11..
    【分析】根据题意,利用指数函数和一次函数的图象与性质,结合函数零点的概念,列出关系式,即可求解.
    【详解】由题意,当时,,根据指数函数的性质,可得,
    所以函数在上没有零点;
    要使得函数存在零点,即上函数存在零点,
    当时,为单调递减函数,
    要使得函数存在零点,则满足,
    即实数的取值范围为.
    故答案为:.
    12.
    【分析】先求出,由此列方程,再利用换元法以及函数与方程的思想求得实数的取值范围.
    【详解】根据题意由可得;
    函数在上存在均值点,即方程在上有解,
    设,则有在上有解;
    即,因此函数与图象有交点,
    而二次函数对称轴为,其在上的值域为,
    所以可得实数的取值范围是.
    故答案为:
    13.100
    【分析】根据题意结合对数运算可得答案.
    【详解】由题意可得:,解得,
    所以.
    故答案为:100.
    14.2020
    【分析】将方程的根问题转化函数的零点所在区间求解,由,利用零点存在性定理可得.
    【详解】设,.
    因为,
    且,
    所以,又在单调递减,
    由零点存在性定理可得,在有唯一零点.
    即方程的根,即.
    故答案为:.
    15.(1)
    (2)
    (3)
    【分析】(1)根据二次函数的单调性及取值情况列方程求解即可得的值;
    (2)将不等式,转化为在上恒成立,利用函数取值即可求得实数k的取值范围;
    (3)原方程化为,令,得到方程,通过二次方程实根分布,可得的不等式组,即可求得的范围.
    【详解】(1)函数,
    因为,对称轴为,所以在区间上是增函数,
    所以,即,解得.
    故.
    (2)由(1)得,
    则不等式为在上恒成立,
    即在上恒成立,
    又时,,则,
    所以,则.
    故实数k的取值范围.
    (3)方程,代入,
    得,,
    化简整理得,
    令,则,
    则方程有两个不相等的实数根等价于关于的一元二次方程有两个大于且不相等的实数根,
    所以,即或,
    解得或.
    所以的取值范围是.
    16.(1)3
    (2)证明见解析
    (3)证明见解析
    【分析】(1)对任意,都有,代入即可得出答案;
    (2)设,利用零点存在性定理即可证得结论;
    (3)令,可知函数具有性质,分三种情况,结合零点存在性定理证得结论.
    【详解】(1)函数具有性质,
    所以对任意,都有,
    令,则,所以.
    (2)函数具有性质的可知:
    存在,使得,即,
    设,
    因为,,
    所以在区间上函数存在零点,
    取,则,此时函数具有性质.
    (3)令,可知的图像是一条连续不断的曲线,
    因为函数具有性质,则,即,
    可得,即函数具有性质,
    若,则1即为零点;
    因为,若,则,矛盾,故,
    若,则,,,
    可得.
    取,即可使得,
    又因为的图像连续不断,
    所以,当时,函数在上存在零点,
    当时,函数在上存在零点,
    若,则由,可得,
    由,可得,
    由,可得.
    取,即可使得,
    又因为的图像连续不断,
    所以,当时,函数在上存在零点,
    当时,函数在上存在零点,
    综上所述:函数在内存在零点,即函数在存在零点.
    【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.
    17.(1)
    (2)
    (3)的最小值为,,
    【分析】(1)由题意将不等式转化为,因式分解后即可得解;
    (2)将原方程有解转化在上有解,利用层层函数的单调性求得在上的值域,从而得解;
    (3)原不等式恒成立等价于在上恒成立,取特殊值后利用绝对值不等式求得的最小值为,从而关于的不等式组,从而可得它们的值,再进行检验即可得解.
    【详解】(1)因为,,
    当时,,
    由,得,整理得,
    即,所以 ,即,
    故不等式的解集为.
    (2)当时,,
    则,
    因为存在实数,使得成立,
    所以在上有解,
    整理得到在上有解,
    因为在上为增函数,则,
    而为增函数,则,
    而为减函数,则,
    所以的值域为,
    故.
    (3)因为,
    所以,
    令,,则,
    因为对于任意的,均有,
    所以对任意的恒成立,
    分别取,得,


    当且仅当时,等号成立,
    所以,即的最小值为,
    此时,整理得,
    故,故,从而,所以.
    下证:在上恒成立.
    设,
    故在上为减函数,在上为增函数,
    故,故在上恒成立.
    综上,,.
    【点睛】思路点睛:已知含参数的不等式恒成立,要求其中参数的具体值,一般通过特例得到关于参数的不等式组,利用两边夹的方法得到参数的取值.
    相关试卷

    10反函数-上海市2023-2024学年高一上学期期末数学专题练习(沪教版2020): 这是一份10反函数-上海市2023-2024学年高一上学期期末数学专题练习(沪教版2020),共13页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    06对数函数-上海市2023-2024学年高一上学期期末数学专题练习(沪教版2020): 这是一份06对数函数-上海市2023-2024学年高一上学期期末数学专题练习(沪教版2020),共16页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    04幂函数-上海市2023-2024学年高一上学期期末数学专题练习(沪教版2020): 这是一份04幂函数-上海市2023-2024学年高一上学期期末数学专题练习(沪教版2020),共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        09函数的应用-上海市2023-2024学年高一上学期期末数学专题练习(沪教版2020)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map