2023-2024学年浙江省台州市名校数学八上期末调研模拟试题含答案
展开
这是一份2023-2024学年浙江省台州市名校数学八上期末调研模拟试题含答案,共7页。试卷主要包含了某一次函数的图象经过点,下面的图形中对称轴最多的是,下列命题中,是真命题的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.在实数,0,,506,,中,无理数的个数是( )
A.2个B.3个C.4个D.5个
2.下列四个命题中的真命题有( )
①两条直线被第三条直线所截,同位角相等;②三角形的一个外角等于它的两个内角之和;③两边分别相等且一组内角相等的两个三角形全等;④直角三角形的两锐角互余.
A.1个B.2个C.3个D.4个
3.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是( )
A.B.C.D.
4.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为( )
A.B.C.D.
5.以下列各组线段为边,能组成三角形的是( )
A.2、2、4B.2、6、3C.8、6、3D.11、4、6
6.一正多边形的内角和与外角和的和是1440°,则该正多边形是( )
A.正六边形B.正七边形C.正八边形D.正九边形
7.下面的图形中对称轴最多的是( )
A.B.
C.D.
8.一个多边形内角和是,则这个多边形的边数为( )
A.B.C.D.
9.若把分式中的x和y都扩大10倍,那么分式的值( )
A.扩大10倍B.不变C.缩小10倍D.缩小20倍
10.下列命题中,是真命题的是( )
A.0的平方根是它本身
B.1的算术平方根是﹣1
C.是最简二次根式
D.有一个角等于60°的三角形是等边三角形
11.如图,AB=AC,AE=AD,要使△ACD≌△ABE,需要补充的一个条件是( )
A.∠B=∠CB.∠D=∠EC.∠BAC=∠EADD.∠B=∠E
12.一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为( )
A.75°B.60°C.45°D.40°
二、填空题(每题4分,共24分)
13.2019年6月,华为第二颗自研7纳米麒麟系列芯片810出炉,7纳米换算为米等于_____米(用科学记数法表示)单位换算方法:1毫米=1000微米,1微米=1000纳米.
14.若点(m,n)在函数y=2x﹣1的图象上,则2m﹣n的值是_____.
15.能使分式的值为零的x的值是______.
16.如图:点在上,、均是等边三角形,、分别与、交于点、,则下列结论① ② ③为等边三角形 ④正确的是______(填出所有正确的序号)
17.如图,∠AOB=30°,点P是它内部一点,OP=2,如果点Q、点R分别是OA、OB上的两个动点,那么PQ+QR+RP的最小值是__________.
18.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.
三、解答题(共78分)
19.(8分)如图,已知△ABC和△DBE都是等腰直角三角形,∠ABC=∠DBE=90°,点D在线段AC上.
(1)求∠DCE的度数;
(2)当点D在线段AC上运动时(D不与A重合),请写出一个反映DA,DC,DB之间关系的等式,并加以证明.
20.(8分)2018年10月,吉州区井冈蜜柚节迎来了四方游客,游客李先生选购了井冈蜜柚和井冈板栗各一箱需要200元.他还准备给4位朋友每人送同样的井冈蜜柚一箱,6位同事每人送同样的井冈板栗一箱,就还需要1040元.
(1)求每箱井冈蜜柚和每箱井冈板栗各需要多少元?
(2)李先生到收银台才得知井冈蜜柚节期间,井冈蜜柚可以享受6折优惠,井冈板栗可以享受8折优惠,此时李先生比预计的付款少付了多少元?
21.(8分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(2,0),C(4,4)均在正方形网格的格点上.
(1)画出△ABC关于x轴对称的图形△A1B1C1并写出顶点A1,B1,C1的坐标;
(2)已知P为y轴上一点,若△ABP与△ABC的面积相等,请直接写出点P的坐标.
22.(10分)在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年1月份的日历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:9×11﹣3×17= ,12×14﹣6×20= ,不难发现,结果都是 .
(1)请将上面三个空补充完整;
(2)请你利用整式的运算对以上规律进行证明.
23.(10分)数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答下列问题:
(1)已知:如图,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.求证:△ABD与△DBC都是等腰三角形;
(2)在证明了该命题后,小乔发现:当∠A≠36°时,一些等腰三角形也具有这样的特性,即经过等腰三角形某一顶点的一条直线可以把该等腰三角形分成两个小等腰三角形.则∠A的度数为______(写出两个答案即可);并画出相应的具有这种特性的等腰三角形及分割线的示意图,并在图中标出两个小等腰三角形的各内角的度数.
(3)接着,小乔又发现:其它一些非等腰三角形也具有这样的特性,即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形.请你画出一个具有这种特性的三角形的示意图,并在图中标出两个小等腰三角形的各内角的度数.
24.(10分)如图所示,在直角坐标系中,△ABC的三个顶点的坐标分别为A(1,5),B(1,−2),C(4,0).
(1)请在图中画出△ABC关于y轴对称的△A′B′C′,并写出三个顶点A′、B′、C′的坐标.
(2)求△ABC的面积.
25.(12分)已知,如图,AD∥BC,∠B=70°,∠C=60°,求∠CAE的度数.(写出推理过程)
26.(12分)如图,正比例函数的图象和一次函数的图象交于点,点B为一次函数的图象与x轴负半轴交点,且的面积为1.
求这两个函数的解析式.
根据图象,写出当时,自变量x的取值范围.
参考答案
一、选择题(每题4分,共48分)
1、A
2、A
3、D
4、C
5、C
6、C
7、B
8、C
9、B
10、A
11、C
12、C
二、填空题(每题4分,共24分)
13、7×10﹣1
14、1
15、1
16、①②③④
17、1
18、AD的中点
三、解答题(共78分)
19、(1)见解析;(1)1BD1=DA1+DC1,见解析
20、(1)每箱井冈蜜柚需要81元,每箱井冈板栗需要121元;(2)李先生比预计的付款少付了328元
21、(1)见解析,A1(0,-1),B1(2,0),C1(4,-4);(2)(0,6)或(0,-4).
22、(1)1,1,1;(2)证明见解析.
23、(1)见解析;(2)90°或108°或;(3)见解析
24、(1)画图见解析;(2)面积为10.1.
25、130°,见解析
26、 (1),;(2).
相关试卷
这是一份浙江省台州市团队六校2023-2024学年数学九上期末调研模拟试题含答案,共8页。试卷主要包含了抛物线的顶点坐标为,某班7名女生的体重等内容,欢迎下载使用。
这是一份浙江省台州市“海山教育联盟”2023-2024学年八上数学期末达标检测模拟试题含答案,共8页。试卷主要包含了一次函数 的图象不经过的象限是等内容,欢迎下载使用。
这是一份2023-2024学年浙江省台州市天台县八上数学期末联考模拟试题含答案,共7页。试卷主要包含了已知,已知点都在直线上,则的大小关系,若关于的分式方程无解,则的值是等内容,欢迎下载使用。