福建省厦门市瑞景外国语分校2023-2024学年数学八上期末质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是( )
A.∠COP=∠DOPB.PC=PDC.OC=ODD.∠COP=∠OPD
2.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是( )
A.51B.49C.76D.无法确定
3.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么 的值为( ).
A.49B.25C.13D.1
4.化简的结果是
A.+1B.C.D.
5.下列各数中最小的是( )
A.0B.1C.﹣D.﹣π
6.下列各数组中,不是勾股数的是( )
A.5,12,13B.7,24,25
C.8,12,15D.3k,4k,5k(k为正整数)
7.下列结论正确的是( )
A.有两个锐角相等的两个直角三角形全等;B.顶角和底边对应相等的两个等腰三角形全等
C.一条斜边对应相等的两个直角三角形全等;D.两个等边三角形全等.
8.如图,在和中,,连接交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为( ).
A.4B.3C.2D.1
9.如图,四边形绕点顺时针方向旋转得到四边形,下列说法正确的是( )
A.旋转角是B.
C.若连接,则D.四边形和四边形可能不全等
10.如图,在中,,是的中点,是上任意一点,连接、并延长分别交、于点、,则图中的全等三角形共有( )
A.对B.对C.对D.对
二、填空题(每小题3分,共24分)
11.若,则=___________.
12.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为__.
13.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB= .
14.函数y=–1的自变量x的取值范围是 .
15.化简:的结果为_______.
16.定义运算“※”:a※b=,若5※x=2,则x的值为___.
17.直角三角形两直角边长分别为5和12,则它斜边上的高为____________
18.若2m=a,32n=b,m,n为正整数,则22m+15n= (结果用含a、b的式子表示)
三、解答题(共66分)
19.(10分)已知有两辆玩具车进行30米的直跑道比赛,两车从起点同时出发,A车到达终点时,B车离终点还差12米,A车的平均速度为2.5米/秒.
(1)求B车的平均速度;
(2)如果两车重新比赛,A车从起点退后12米,两车能否同时到达终点?请说明理由;
(3)在(2)的条件下,若调整A车的平均速度,使两车恰好同时到达终点,求调整后A车的平均速度.
20.(6分)计算:(1)
(2).
21.(6分)如图1,已知直线AO与直线AC的表达式分别为:和.
(1)直接写出点A的坐标;
(2)若点M在直线AC上,点N在直线OA上,且MN//y轴,MN=OA,求点N的坐标;
(3)如图2,若点B在x轴正半轴上,当△BOC的面积等于△AOC的面积一半时,求∠ACO+∠BCO的大小.
22.(8分)阅读下列材料:
在学习“可化为一元一次方程的分式方程及其解法”的过程中,老师提出一个问题:若关于x的分式方程=1的解为正数,求a的取值范围.
经过独立思考与分析后,小杰和小哲开始交流解题思路如下:
小杰说:解这个关于x的分式方程,得x=a+1.由题意可得a+1>0,所以a>﹣1,问题解决.
小哲说:你考虑的不全面,还必须保证x≠1,即a+1≠1才行.
(1)请回答: 的说法是正确的,并简述正确的理由是 ;
(2)参考对上述问题的讨论,解决下面的问题:
若关于x的方程的解为非负数,求m的取值范围.
23.(8分)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.(以上长度单位:cm)
(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为________;
(2)若每块小长方形的面积为10 cm2,四个正方形的面积和为58 cm2,试求图中所有裁剪线(虚线部分)长之和.
24.(8分)某次歌唱比赛,三名选手的成绩如下:
(1)若按三项的平均值取第一名,谁是第一名;
(2)若三项测试得分按3:6:1的比例确定个人的测试成绩,谁是第一名?
25.(10分)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.
(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?
(2)若单独租用一台车,租用哪台车合算?
26.(10分)在复习课上,老师布置了一道思考题:如图所示,点,分别在等边的,边上,且,,交于点.求证:.
同学们利用有关知识完成了解答后,老师又提出了下列问题,请你给出答案并说明理由.
(1)若将题中“”与“”的位置交换,得到的是否仍是真命题?
(2)若将题中的点,分别移动到,的延长线上,是否仍能得到?
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、A
4、D
5、D
6、C
7、B
8、B
9、C
10、A
二、填空题(每小题3分,共24分)
11、
12、150cm
13、85°.
14、x≥1
15、
16、2.5或1.
17、
18、
三、解答题(共66分)
19、 (1) B车的平均速度为米/秒;(2)不能,理由见解析;(3) A车调整后的平均速度为米/秒
20、(1)(2).
21、(1)A点的坐标为(4,2);(2)N的坐标为(),();(3)∠ACO+∠BCO=45°
22、(1)小哲;分式的分母不为0;(2)m≥﹣6且m≠﹣2.
23、 (1)(m+2n)(2m+n)(2)42cm
24、(1)甲将得第一名;(2)乙将得第一名.
25、(1)甲车单独运完需18趟,乙车单独运完需1趟;
(2)单独租用一台车,租用乙车合算.
26、(1)真命题;(2)能,见解析
测试项目
测试成绩
甲
乙
丙
创新
72
85
67
唱功
62
77
76
综合知识
88
45
67
福建省厦门市六校2023-2024学年九上数学期末质量检测模拟试题含答案: 这是一份福建省厦门市六校2023-2024学年九上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,方程的两根分别为,抛物线y=22﹣1的顶点坐标是等内容,欢迎下载使用。
2023-2024学年福建省厦门市瑞景外国语分校九上数学期末质量跟踪监视试题含答案: 这是一份2023-2024学年福建省厦门市瑞景外国语分校九上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了把二次函数化成的形式是下列中的,下列是随机事件的是,方程变为的形式,正确的是等内容,欢迎下载使用。
福建省厦门市瑞景外国语分校2023-2024学年九上数学期末质量检测试题含答案: 这是一份福建省厦门市瑞景外国语分校2023-2024学年九上数学期末质量检测试题含答案,共8页。试卷主要包含了如图4,,如图,在中,,若,,则与的比是等内容,欢迎下载使用。