山东省临沂市兰山区2023-2024学年八上数学期末学业质量监测模拟试题含答案
展开
这是一份山东省临沂市兰山区2023-2024学年八上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了某次知识竞赛共有20道题,规定,9的算术平方根是,已知二元一次方程组,则a的值是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.当时,代数式的值为( ).
A.7B.C.D.1
2.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为( )
A.PN<3B.PN>3C.PN≥3D.PN≤3
3.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则( )
A.x-y=20B.x+y=20
C.5x-2y=60D.5x+2y=60
4.对于一次函数y=﹣2x+1,下列说法正确的是( )
A.图象分布在第一、二、三象限
B.y随x的增大而增大
C.图象经过点(1,﹣2)
D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1>y2
5.9的算术平方根是( )
A.3B.9C.±3D.±9
6.已知二元一次方程组,则a的值是( )
A.3B.5C.7D.9
7.如图,,的平分线与的平分线相交于点,作于点,若,则点到与的距离之和为( ).
A.B.C.D.
8.在平面直角坐标系中,点A(2,3)与点B关于轴对称,则点B的坐标为
A.(3,2)B.(-2,-3)C.(-2,3)D.(2,-3)
9.若长度分别为的三条线段能组成一个三角形,则a的值可以是( )
A.1B.2C.3D.8
10.如图,B、E,C,F在同一条直线上,若AB=DE,∠B=∠DEF,添加下列一个条件后,能用“SAS”证明△ABC≌△DEF,则这条件是( )
A.∠A=∠DB.∠ABC=∠FC.BE=CFD.AC=DF
二、填空题(每小题3分,共24分)
11.当x______时,分式有意义.
12.在平面直角坐标系中,矩形如图放置,动点从出发,沿所示方向运动,每当碰到矩形的边时反弹,每次反弹的路径与原路径成度角(反弹后仍在矩形内作直线运动),当点第次碰到矩形的边时,点的坐标为;当点第次碰到矩形的边时,点的坐标为 __________.
13.已知,分别是的整数部分和小数部分,则的值为_______.
14.如图所示,是将长方形纸牌ABCD沿着BD折叠得到的,若AB=4,BC=6,则OD的长为_____.
15.某班的一个综合实践活动小组去甲、乙两个超市调查去年和今年“元旦”期间的销售情况,下面是调查后小明与其它两位同学进行交流的情景.
小明说:“去年两超市销售额共为150万元,今年两超市销售额共为170万元”,
小亮说:“甲超市销售额今年比去年增加10%
小颖说:“乙超市销售额今年比去年增加20%
根据他们的对话,得出今年甲超市销售额为_____万元
16.方程的根是______.
17.在平面直角坐标系中,点A(2,0),B(0,1),当点C的坐标为_______ 时,△BOC与△ABO全等.
18.如图,已知△ABC中, ∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=______度.
三、解答题(共66分)
19.(10分)某校八年级(1)班甲、乙两男生在5次引体向上测试中有效次数如下:
甲:8,8,7,8,9;乙:5,9,7,10,9;
甲乙两同学引体向上的平均数、众数、中位数、方差如下:
根据以上信息,回答下列问题:
(1)表格是a= ,b= ,c= .(填数值)
(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是 .班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是 ;
(3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数 ,中位数 ,方差 .(填“变大”、“变小”或“不变”)
20.(6分)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.
(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?
(2)若单独租用一台车,租用哪台车合算?
21.(6分)某列车平均提速vkm/h,用相同的时间,列车提速前行驶150km,提速后比提速前多行驶50km,提速前列车的平均速度为多少?(用含v的式子表示)
22.(8分)我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、字相乘法等等,将一个多项式适当分组后,可提公因式或运用公式继续分解的方法叫做分组分解.
例如:
利用这种分组的思想方法解决下列问题:
(1)分解因式;
(2)三边a,b,c满足判断的形状,并说明理由.
23.(8分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:
收集数据:
整理数据:
分析数据:
请根据以上提供的信息,解答下列问题:
(1)填空:a= ,b= ;m= ,n= ;
(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;
(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?
24.(8分)如图,已知中,,,点是的中点,如果点在线段上以的速度由点向点移动,同时点在线段上由点向点以的速度移动,若、同时出发,当有一个点移动到点时,、都停止运动,设、移动时间为.
(1)求的取值范围.
(2)当时,问与是否全等,并说明理由.
(3)时,若为等腰三角形,求的值.
25.(10分)先化简,再求值:
,其中
26.(10分)已知:∠AOB=30°,点P是∠AOB 内部及射线OB上一点,且OP=10cm.
(1)若点P在射线OB上,过点P作关于直线OA的对称点,连接O、P, 如图①求P的长.
(2)若过点P分别作关于直线OA、直线OB的对称点、,连接O、O、如图②, 求的长.
(3)若点P在∠AOB 内,分别在射线OA、射线OB找一点M,N,使△PMN的周长取最小值,请直接写出这个最小值.如图③
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、C
4、D
5、A
6、B
7、D
8、D
9、C
10、C
二、填空题(每小题3分,共24分)
11、x≠-1
12、(8,3)
13、
14、
15、1
16、,
17、(-2,1),(2,1)或(-2,0)
18、25
三、解答题(共66分)
19、(1)a、b、c的值分别是8、8、9;(2)甲的方差较小,比较稳定;乙的中位数是9,众数是9,获奖次数较多;(3)不变;变小;变小.
20、(1)甲车单独运完需18趟,乙车单独运完需1趟;
(2)单独租用一台车,租用乙车合算.
21、3vkm/h
22、(1);(2)是等腰三角形,理由见解析
23、(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本
24、(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形
25、-2
26、(1)= 10cm;(2)= 10cm;(3)最小值是10cm.
平均数
众数
中位数
方差
甲
8
b
8
0.4
乙
a
9
c
3.2
30
60
81
50
40
110
130
146
90
100
60
81
120
140
70
81
10
20
100
81
课外阅读平均时间x(min)
0≤x<40
40≤x<80
80≤x<120
120≤x<160
等级
D
C
B
A
人数
3
a
8
b
平均数
中位数
众数
80
m
n
相关试卷
这是一份山东省临沂费县联考2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列事件是必然事件的为等内容,欢迎下载使用。
这是一份2023-2024学年山东省临沂市临沭县八上数学期末监测模拟试题含答案,共9页。试卷主要包含了如图,,,, 的倒数是等内容,欢迎下载使用。
这是一份山东省泰安市肥城市2023-2024学年八上数学期末学业质量监测模拟试题含答案,共8页。